RNA测序数据分析

rna_seq_banner6
rna_seq_data_analysis

RNA测序数据分析揭示了基因调控的复杂机制。

基因表达的转录组广泛应用于研究从 单细胞 到组织和复杂的微生物群落中的生物系统中的基因调控的研究。 RNA测序数据允许进行各种分析,以解决生物学和生物医学领域中无数的研究问题。

下面我们介绍了我们在RNA-seq数据上执行的一些最常见的分析。探索性、差异表达和通路分析大多也适用于其他高通量表达数据,如表达型芯片或蛋白质组学数据。

我们希望下面的示例能启发您欣赏RNA-测序的丰富多彩世界。

探索性基因表达分析

每个RNA-seq表达研究都包括探索性分析。在经过原始测序reads质量控制和基因计数之后,使用主成分分析(PCA)和表达热图来可视化数据集,以揭示其一般模式。这些可视化帮助我们回答以下问题:

  • 生物学重复是否与其表达剖面相似?
  • 不同样本组(例如不同组织、处理或时间点)是否形成单独的聚类?
  • 是否存在异常样本?
rna_seq_exploratory_analysis

差异表达分析

差异表达分析是对两个样本组进行统计比较的过程。它会得到每个检测到的转录本的差异表达统计数据,例如折叠差异和统计显著性。这些统计数据通常使用火山图进行可视化。被发现上调或下调的基因可以进一步通过热图或箱线图进行可视化。

作为一种统计分析方法,表达研究中的这个阶段受益于生物复制品带来的统计功率。每个条件至少需要三个生物重复样本,但这仅适用于可靠检测具有相对较大表达差异的基因。通过谨慎的实验设计和足够的样本量,可以检测到更微妙的差异,并控制混杂因素。

rna_seq_differential_expression_analysis

通路分析

通路分析将差异表达分析中的基因放在更广泛的生物学背景中。简单的通路分析会将上调和下调基因与预定的基因列表进行统计学比较。这些列表被注释为生物学意义的术语,例如生物过程、信号通路或特定疾病。

这样的分析可能依靠过表达分析或基因集富集分析,两者都会得出具有相关统计学和注释的富集基因集列表。

更多机制通路分析依赖于基因之间实验验证的相互作用。它们不仅能够确定哪些通路由差异表达的基因表示,还能揭示通路是否被激活或抑制,以及由哪些基因激活或抑制。

更高级的通路分析我们使用Ingenuity Pathway Analysis (IPA, QIAGEN)。IPA能够进行深入分析已知和新颖的基因调控网络。

rna_seq_pathway_analysis.996x0-is

转录组组装

对于非模式生物以及具有非常动态的基因组,例如微生物,我们通常通过组装新的转录组来开始RNA测序数据分析,并使用相关物种的同源基因和计算基因预测来注释它。

一个新的参考转录组对您的进一步研究和整个研究社区的研究都是非常宝贵的资源。一旦建立了高质量的参考转录组,就可以打开大多数下游分析的大门,这些下游分析通常用于模型生物。

rna_seq_transcriptome_assembly

单细胞表达分析

单细胞RNA测序(scRNA-seq)实验可以以比批量RNA测序更高的规模和分辨率对细胞类型进行编目和揭示分化轨迹。

特别是用于研究复杂组织的组成和发展,scRNA-seq数据集通常包含数千个单个细胞。大多数用于分析批量RNA-seq数据的方法也可以为单细胞RNA-seq数据量身定制。

了解更多

scrna_seq_analysis

MicroRNA数据分析

小RNA测序可用于研究各种短RNA物种,尤其是microRNAs。MicroRNA-seq分析与mRNAs的分析主要类似,但路径和调节分析利用预测和/或先前验证过的microRNA靶基因。

从匹配样品中同时测序mRNA和小RNA可估计microRNAs与其靶标之间的调节关系。为了确定在给定条件下受microRNA调节的基因,可以使用argo naute CLIP-测序(和相关协议)。

mirna_seq_analysis

可变剪接 分析

除了在基因水平上研究表达外,RNA测序还允许进行更详细的视图:剪接变异水平的表达。可靠地鉴定可变剪接事件需要比典型的基因水平表达分析更深的测序。

根据数据的数量和质量,可变剪接分析可以集中于量化已知的、先前注释的剪接亚型的表达水平,或检测新的剪接事件。

rna_seq_alternative_splicing_analysis

融合基因检测

在癌症中,某些结构变异已知会导致融合基因。DNA中两个分开的基因融合在一起可能导致融合转录本。反过来,融合转录本可能导致融合蛋白质具有新的、潜在的癌症驱动调控和功能组合。

可以使用识别和分析discordantly mapping RNA-seq读数或读取对的工具从RNA-seq数据中检测融合基因。

rna_seq_fusion_detection

整合RNA-seq和表观基因组数据

在同一样本上进行RNA-seq和表观基因组测序(例如ChIP或ATAC-seq)可以进行整合分析,研究基因调控程序的全基因组范围。

可以在基因表达和调控元素的表观基因组状态的证据基础上,确定增强子与其靶基因以及转录因子与其靶基因之间的调控联系。

了解更多

screen_shot_2022-11-04_at_4_31_31_pm

微生物与病毒生物信息学 vs. 细菌与病毒生物信息学

核心区别

  • Microbial & Viral Bioinformatics(微生物与病毒生物信息学)
    研究对象更广,涵盖所有类型的微生物(细菌、古菌、真菌、原生生物等)以及病毒。
  • Bacterial and Viral Bioinformatics(细菌与病毒生物信息学)
    研究对象较窄,专注于细菌和病毒,不包括其他非细菌类微生物。
Bacterial_and_Viral_Bioinformatics

对比表

维度 微生物与病毒生物信息学 细菌与病毒生物信息学
研究对象范围 微生物(细菌、古菌、真菌、原生生物等)+ 病毒 仅限细菌 + 病毒
广度 广,涵盖多类生物 窄,专注于细菌相关
典型研究方向 宏基因组学、群落生态学、宿主-微生物互作、病毒-微生物关系 细菌基因组学、耐药基因预测、病原体分析、噬菌体研究
应用场景 微生物群落研究、环境样本分析、人体微生物组研究 医学细菌学、传染病、抗生素耐药机制
学科定位 偏向综合性、生态学与系统层面 偏向临床、病原学与应用层面

应用实例对比

  • 微生物与病毒生物信息学

    • 实例:分析人类肠道微生物组(细菌、真菌、古菌等)与病毒群落的互作,探索其与肥胖、糖尿病或免疫系统疾病的关系。
    • 特点:关注整体微生物生态系统,强调多类生物之间的协同与平衡。
  • 细菌与病毒生物信息学

    • 实例:研究医院获得性耐药细菌(如耐甲氧西林金黄色葡萄球菌,MRSA)及其与噬菌体的互作,寻找新的治疗策略。
    • 特点:聚焦病原体与临床应用,强调对疾病防控和治疗的直接价值。

总结

  • Microbial & Viral Bioinformatics:范围大,适合研究多样微生物群落及其与病毒的关系。
  • Bacterial and Viral Bioinformatics:范围小,专注于细菌和病毒,更聚焦临床和病原学研究。

import matplotlib.pyplot as plt
from matplotlib_venn import venn2

# Create side-by-side comparison
fig, axes = plt.subplots(1, 2, figsize=(12,6))

# --- Left: Microbial & Viral ---
venn_left = venn2(
    subsets=(1, 1, 1),
    set_labels=("Microbes", "Viruses"),
    ax=axes[0],
    set_colors=("skyblue", "lightcoral"),  # 微生物用蓝色,病毒用红色
    alpha=0.6
)
venn_left.get_label_by_id('10').set_text('Bacteria, Archaea,\nFungi, Protists')
venn_left.get_label_by_id('01').set_text('Viruses')
venn_left.get_label_by_id('11').set_text('Microbe-Virus\ninteractions')
axes[0].set_title("Microbial & Viral Bioinformatics")

# --- Right: Bacterial & Viral ---
venn_right = venn2(
    subsets=(1, 1, 1),
    set_labels=("Bacteria", "Viruses"),
    ax=axes[1],
    set_colors=("lightgreen", "lightcoral"),  # 细菌用绿色,病毒用红色
    alpha=0.6
)
venn_right.get_label_by_id('10').set_text('Bacteria\n(pathogens, commensals)')
venn_right.get_label_by_id('01').set_text('Viruses\n(phages, human viruses)')
venn_right.get_label_by_id('11').set_text('Bacteria-Virus\ninteractions')
axes[1].set_title("Bacterial & Viral Bioinformatics")

# Add a caption below the plots
fig.text(
    0.5, -0.05,
    "Comparison: Microbial & Viral Bioinformatics covers all microbes (bacteria, archaea, fungi, protists) plus viruses,\n"
    "while Bacterial & Viral Bioinformatics is narrower, focusing only on bacteria and viruses.",
    ha='center', fontsize=10
)

plt.tight_layout()
plt.show()
import matplotlib.pyplot as plt

fig, ax = plt.subplots(figsize=(6,6))

# 大圆 - Microbial
microbe_circle = plt.Circle((0,0), 1.0, color="skyblue", alpha=0.4, label="Microbes")
ax.add_artist(microbe_circle)

# 小圆 - Bacteria (在Microbial里)
bacteria_circle = plt.Circle((0.3,0.3), 0.4, color="lightgreen", alpha=0.6, label="Bacteria")
ax.add_artist(bacteria_circle)

# 另一个圆 - Viruses
virus_circle = plt.Circle((-0.2,-0.2), 0.6, color="lightcoral", alpha=0.6, label="Viruses")
ax.add_artist(virus_circle)

# 设置比例 & 美化
ax.set_xlim(-1.5, 1.5)
ax.set_ylim(-1.5, 1.5)
ax.set_aspect("equal")
ax.axis("off")

# 添加标签
ax.text(-0.9, 1.0, "Microbes\n(bacteria, archaea, fungi, protists)", fontsize=10, color="blue")
ax.text(0.4, 0.6, "Bacteria", fontsize=10, color="green")
ax.text(-0.9, -0.8, "Viruses", fontsize=10, color="red")

plt.title("Nested Scope: Microbes vs Bacteria with Viruses", fontsize=12)
plt.show()

Analyse spatial transcriptomic data

Click here (http://xgenes.com/course/spatialtx/) to get started.

Analyzing spatial transcriptomic data involves several steps, including quality control, data pre-processing, spatial mapping, cell-type identification, differential expression analysis, and functional analysis. Here are the main steps involved in spatial transcriptomic data analysis:

Quality control: This step involves checking the quality of the sequencing reads using tools such as FastQC. If the quality is low, the data may need to be re-sequenced or filtered to remove low-quality reads or adapter sequences. Data pre-processing: This step involves filtering out low-quality cells, normalizing the data, and identifying highly variable genes using tools such as ST Pipeline or STARmap. Spatial mapping: This step involves mapping the transcriptomic data to the spatial coordinates of the tissue sections using tools such as ST Pipeline or STARmap. This produces a spatial expression matrix that contains the expression levels of each gene in each spatial location. Cell-type identification: This step involves identifying the cell types that are present in each spatial location using tools such as CellFinder or SpatialDE. Differential expression analysis: This step involves identifying genes that are differentially expressed between different spatial locations or cell types. This can be done using tools such as ST Pipeline or SpatialDE. Functional analysis: This step involves interpreting the differentially expressed genes by performing pathway or gene ontology analysis. This can be done using tools such as GSEA or Enrichr. Data visualization: This step involves visualizing the results of the analysis using tools such as heatmaps, spatial plots, or 3D visualizations. Overall, analyzing spatial transcriptomic data is a complex process that involves several steps and tools. It is important to carefully QC the data, choose appropriate normalization and statistical methods, and interpret the results in the context of the biological question being studied. Additionally, there are specialized tools and methods available for different types of spatial transcriptomic data, such as MERFISH or CODEX, which may require different analysis pipelines.

Anlalyse single cell transcriptomic data

Click here (http://xgenes.com/course/singlecelltx/) to get started.

Analyzing single-cell transcriptomic data involves several steps, including quality control, data pre-processing, cell clustering, differential expression analysis, and functional analysis. Here are the main steps involved in single-cell transcriptomic data analysis:

Quality control: This step involves checking the quality of the sequencing reads using tools such as FastQC. If the quality is low, the data may need to be re-sequenced or filtered to remove low-quality reads or adapter sequences. Data pre-processing: This step involves filtering out low-quality cells, normalizing the data, and identifying highly variable genes using tools such as Seurat or Scanpy. Cell clustering: This step involves grouping cells that have similar gene expression profiles into clusters using unsupervised clustering algorithms such as k-means or hierarchical clustering. This can be done using tools such as Seurat, Scanpy, or RaceID. Differential expression analysis: This step involves identifying genes that are differentially expressed between different clusters of cells. This can be done using tools such as Seurat or Scanpy. Functional analysis: This step involves interpreting the differentially expressed genes by performing pathway or gene ontology analysis. This can be done using tools such as GSEA or Enrichr. Data visualization: This step involves visualizing the results of the analysis using tools such as t-SNE, UMAP, or heatmaps. Overall, analyzing single-cell transcriptomic data is a complex process that involves several steps and tools. It is important to carefully QC the data, choose appropriate normalization and statistical methods, and interpret the results in the context of the biological question being studied. Additionally, there are specialized tools and methods available for different types of single-cell transcriptomic data, such as scRNA-seq, scATAC-seq, or spatial transcriptomics, which may require different analysis pipelines.

Anlalyse RNA-seq data

Click here (http://xgenes.com/course/rnaseq/) to get started.

Analyzing RNA-seq data involves several steps, including quality control, alignment or mapping of the reads to a reference genome or transcriptome, quantification of gene expression, normalization, differential gene expression analysis, and functional analysis of the differentially expressed genes. Here are the main steps involved in RNA-seq data analysis:

Quality control: This step involves checking the quality of the sequencing reads using tools such as FastQC. If the quality is low, the data may need to be re-sequenced or trimmed to remove low-quality reads or adapter sequences. Alignment or mapping: This step involves aligning the sequencing reads to a reference genome or transcriptome using tools such as HISAT2, STAR, or Tophat. This step produces alignment files (in BAM or SAM format) that are used in the next step. Quantification: This step involves quantifying gene expression levels from the aligned reads using tools such as featureCounts or HTSeq. This produces a count matrix that contains the number of reads mapped to each gene. Normalization: This step involves normalizing the count matrix to account for differences in sequencing depth or library size between samples. Common normalization methods include TMM or FPKM. Differential gene expression analysis: This step involves identifying genes that are differentially expressed between two or more groups of samples. This is typically done using statistical tests such as the Wald test or the Likelihood Ratio test in packages such as DESeq2, edgeR, or limma-voom. Functional analysis: This step involves interpreting the differentially expressed genes by performing pathway or gene ontology analysis. This can be done using tools such as DAVID, Enrichr, or GSEA. Overall, analyzing RNA-seq data is a complex process that involves several steps and tools. It is important to carefully QC the data, choose appropriate normalization and statistical methods, and interpret the results in the context of the biological question being studied.

Explore microbiome data with Phyloseq

Click here (http://xgenes.com/course/phyloseq/) and Click here (http://xgenes.com/course/phyloseq2/) to get started.

Phyloseq is an R package for the analysis of microbiome data. Microbiome data is generated from high-throughput sequencing technologies such as 16S rRNA gene sequencing or metagenomic sequencing, which allow for the identification and quantification of the microbial species present in a given sample.

Phyloseq provides a framework for importing, analyzing, and visualizing microbiome data in R. It allows users to perform a wide range of analyses, including alpha and beta diversity analyses, differential abundance testing, and network analysis. Additionally, Phyloseq integrates with other R packages for statistical analysis and data visualization.

Overall, Phyloseq provides a powerful toolset for exploring microbiome data and generating insights into the microbial communities present in a given sample.

Align Sequences with MUSCLE

Click here (http://sishi.com/muscleform) to get started.

MUSCLE (Multiple Sequence Comparison by Log-Expectation) is a software program used for multiple sequence alignment of nucleotide or protein sequences. It is a fast and efficient program that can align large numbers of sequences with high accuracy. It was developed by Robert C. Edgar, who first described it in a paper titled “MUSCLE: multiple sequence alignment with high accuracy and high throughput” published in the journal Nucleic Acids Research in 2004.

Optimize your RNA secondary structure with RNAHeliCes

Click here (http://sishi.com/rnahelicesform) to get started.

RNAHeliCes is a computational tool used to analyze RNA folding space. RNA molecules can fold into a variety of structures, and understanding the folding process is important for studying their biological functions. RNAHeliCes uses a simplified representation of RNA structures, in which each structure is abstracted using position-specific helices. This approach allows RNAHeliCes to analyze large RNA datasets efficiently, by reducing the complexity of the structures and focusing on their most important features.

The method behind RNAHeliCes was developed by a team of researchers led by Jiabin Huang, Rolf Backofen, and Björn Voß. The work was published in the scientific journal RNA in 2012, and the paper is titled “Abstract folding space analysis based on helices.” The paper describes the method in detail, including how the helix-based abstraction is implemented and how it can be used to analyze RNA folding space. We also provide examples of how RNAHeliCes can be used to analyze RNA molecules with known structures, and how it can be used to predict the structures of RNA molecules with unknown structures.

DNA测序数据分析

dna_seq_banner
dna_seq_data_analysis

通过DNA测序数据分析了解遗传变异和突变的影响。

DNA测序有多种形式,包括全基因组测序(WGS)、全外显子组测序(WES)和目标测序,可以研究遗传和体细胞DNA变异。除了NGS数据外,SNP和CGH阵列也可用于识别遗传多态性和拷贝数变异。微生物群落的宏基因组全基因组测序可用于分析它们的组成和功能。

我们经常分析DNA序列数据来回答基础生物学和生物医学设置中的研究问题。以下是一些典型的DNA测序数据分析。

变异分析

在大多数情况下,DNA测序用于识别和分析遗传变异。这些变异可以是小的核苷酸置换、插入、删除、拷贝数改变或结构变异。此外,它们可能是遗传多态性或体细胞突变。

变异分析通常从原始DNA测序数据的质量控制开始,并将测序读取与参考基因组进行比对。然后可以计算出样品与公共参考或不同样品之间不同的变异。

变异分析的关键部分是注释检测到的变异。注释,例如等位基因频率(在样本和gnomAD等公共数据库中),对蛋白质结构或基因调控的预测影响以及预测的致病性,可用于下游分析和解释中灵活选择或排名变异。

癌症研究中的变异分析通常侧重于识别加速肿瘤发生的体细胞突变(驱动突变)或可用于诊断患者或预测其疾病进程的突变。然而,非驱动突变(乘客)也携带信息。它们增加了对突变特征和癌细胞克隆性分析的可靠性。了解更多有关 癌症研究中的突变分析。

somatic_mutation_analysis.530x0-is

基因组组装

对于没有参考基因组或基因组高度动态的生物,DNA测序数据分析从组装一个全新的基因组开始。基因组组装受益于深度全基因组测序。

一个组装好的基因组会基于序列同源性、预测基因序列以及(如果有的话)来自同一生物体的RNA测序数据进行注释。如果存在近缘物种的注释基因组,可以通过将基因信息转移到新组装的基因组中来改进注释。

组装好的基因组的质量通过指标(如N50、L50以及高度保守的同源基因的完整性)进行评估。新的高质量基因组可以进行全基因组分析、群体遗传学等等!

genome_assembly

宏基因组学

宏基因组学提供了对生态位中微生物多样性的无偏视图,包括来自寄主生物体和土壤的样品。使用shot-gun全基因组测序数据,reads被组装成contigs并分配给物种或操作分类单元(OTUs)。

已确定的物种或OTUs被组织成系统发育并进行定量。通过使用公共数据库,可以确定序列社群中单个基因或多基因途径所带来的功能。

请注意,16S引物子测序是宏基因组测序的一种经济实惠的替代方法,可用于识别物种并构建系统发育,但不允许进行高质量的功能分析。

metagenomics

群体遗传学

从相关种群中采样的个体的全基因组测量包含有关群体结构、谱系和历史的丰富信息。非模式生物的群体遗传分析通常从基因组组装和注释开始,然后进一步确定样本群体中的遗传多态性。基于这些多态性及其等位基因频率的下游分析有助于研究物种形成和适应等进化现象。

典型的分析包括主成分分析、对群体内和群体间的遗传变异进行分析以识别受进化选择影响的位点,以及对群体混合、系统发育和人口历史的分析。

population_genetics3

全基因组关联分析

生物医学上的群体规模遗传分析旨在确定与相关表型或疾病相关的基因和变异。除了一些单基因遗传性很强的疾病外,大多数疾病需要大的群体级别样本量才能获得足够的统计力量以发现关联。这样的全基因组关联研究(GWAS)基于来自生物库或其他大型存储库的SNP阵列或DNA测序数据。

GWAS的结果会给出每个个体变异与研究疾病之间的关联的统计数据。对于多基因疾病,即使疾病具有很强的遗传性,单个变异也可能具有非常弱的效应大小。在这种情况下,可以使用多基因风险评分(PRS)来总结大量变异的效应,得出一个综合风险评分,具有潜在的临床应用。

gwas_and_prs2