-
install mambaforge https://conda-forge.org/miniforge/ (recommended)
#download Mambaforge-24.9.2-0-Linux-x86_64.sh from website chmod +x Mambaforge-24.9.2-0-Linux-x86_64.sh ./Mambaforge-24.9.2-0-Linux-x86_64.sh To activate this environment, use: micromamba activate /home/jhuang/mambaforge Or to execute a single command in this environment, use: micromamba run -p /home/jhuang/mambaforge mycommand installation finished. Do you wish to update your shell profile to automatically initialize conda? This will activate conda on startup and change the command prompt when activated. If you'd prefer that conda's base environment not be activated on startup, run the following command when conda is activated: conda config --set auto_activate_base false You can undo this by running `conda init --reverse $SHELL`? [yes|no] [no] >>> yes no change /home/jhuang/mambaforge/condabin/conda no change /home/jhuang/mambaforge/bin/conda no change /home/jhuang/mambaforge/bin/conda-env no change /home/jhuang/mambaforge/bin/activate no change /home/jhuang/mambaforge/bin/deactivate no change /home/jhuang/mambaforge/etc/profile.d/conda.sh no change /home/jhuang/mambaforge/etc/fish/conf.d/conda.fish no change /home/jhuang/mambaforge/shell/condabin/Conda.psm1 no change /home/jhuang/mambaforge/shell/condabin/conda-hook.ps1 no change /home/jhuang/mambaforge/lib/python3.12/site-packages/xontrib/conda.xsh no change /home/jhuang/mambaforge/etc/profile.d/conda.csh modified /home/jhuang/.bashrc ==> For changes to take effect, close and re-open your current shell. <== no change /home/jhuang/mambaforge/condabin/conda no change /home/jhuang/mambaforge/bin/conda no change /home/jhuang/mambaforge/bin/conda-env no change /home/jhuang/mambaforge/bin/activate no change /home/jhuang/mambaforge/bin/deactivate no change /home/jhuang/mambaforge/etc/profile.d/conda.sh no change /home/jhuang/mambaforge/etc/fish/conf.d/conda.fish no change /home/jhuang/mambaforge/shell/condabin/Conda.psm1 no change /home/jhuang/mambaforge/shell/condabin/conda-hook.ps1 no change /home/jhuang/mambaforge/lib/python3.12/site-packages/xontrib/conda.xsh no change /home/jhuang/mambaforge/etc/profile.d/conda.csh no change /home/jhuang/.bashrc No action taken. WARNING conda.common.path.windows:_path_to(100): cygpath is not available, fallback to manual path conversion WARNING conda.common.path.windows:_path_to(100): cygpath is not available, fallback to manual path conversion Added mamba to /home/jhuang/.bashrc ==> For changes to take effect, close and re-open your current shell. <== Thank you for installing Mambaforge! Close your terminal window and open a new one, or run: #source ~/mambaforge/bin/activate conda --version mamba --version https://github.com/conda-forge/miniforge/releases Note * After installation, please make sure that you do not have the Anaconda default channels configured. conda config --show channels conda config --remove channels defaults conda config --add channels conda-forge conda config --show channels conda config --set channel_priority strict #conda clean --all conda config --remove channels biobakery * !!!!Do not install anything into the base environment as this might break your installation. See here for details.!!!! # --Deprecated method: mamba installing on conda-- #conda install -n base --override-channels -c conda-forge mamba 'python_abi=*=*cp*' # * Note that installing mamba into any other environment than base is not supported. # #conda activate base #conda install conda #conda uninstall mamba #conda install mamba
2: install required Tools on the mamba env
* Sniffles2: Detect structural variants, including transposons, from long-read alignments.
* RepeatModeler2: Identify and classify transposons de novo.
* RepeatMasker: Annotate known transposable elements using transposon libraries.
* SVIM: An alternative structural variant caller optimized for long-read sequencing, if needed.
* SURVIVOR: Consolidate structural variants across samples for comparative analysis.
mamba deactivate
# Create a new conda environment
mamba create -n transposon_long python=3.6 -y
# Activate the environment
mamba activate transposon_long
mamba install -c bioconda sniffles
mamba install -c bioconda repeatmodeler repeatmasker
# configure repeatmasker database
mamba info --envs
cd /home/jhuang/mambaforge/envs/transposon_long/share/RepeatMasker
#mamba install python=3.6
mamba install -c bioconda svim
mamba install -c bioconda survivor
-
Test the installed tools
# Check versions sniffles --version RepeatModeler -h RepeatMasker -h svim --help SURVIVOR --help mamba install -c conda-forge perl r
-
Data Preparation
Raw Signal Data: Nanopore devices generate electrical signal data as DNA passes through the nanopore. Basecalling: Tools like Guppy or Dorado are used to convert raw signals into nucleotide sequences (FASTQ files).
-
Preprocessing
Quality Filtering: Remove low-quality reads using tools like Filtlong or NanoFilt. Adapter Trimming: Identify and remove sequencing adapters with tools like Porechop.
-
(Optional) Variant Calling for SNP and Indel Detection:
Tools like Medaka, Longshot, or Nanopolish analyze the aligned reads to identify SNPs and small indels.
-
Alignment and Structural Variant Calling: Tools such as Sniffles or SVIM detect large insertions, deletions, and other structural variants. 使用长读长测序工具如 SVIM 或 Sniffles 检测结构变异(e.g. 散在性重复序列)。
#NOTE that the ./batch1_depth25/trycycler_WT/reads.fastq and F24A430001437_BACctmoD/BGI_result/Separate/${sample}/1.Cleandata/${sample}.filtered_reads.fq.gz are the same! ./4/1.Cleandata/4.filtered_reads.fq.gz ./3/1.Cleandata/3.filtered_reads.fq.gz ./2/1.Cleandata/2.filtered_reads.fq.gz ./8/1.Cleandata/8.filtered_reads.fq.gz ./5/1.Cleandata/5.filtered_reads.fq.gz ./WT/1.Cleandata/WT.filtered_reads.fq.gz ./9/1.Cleandata/9.filtered_reads.fq.gz ./10/1.Cleandata/10.filtered_reads.fq.gz ./7/1.Cleandata/7.filtered_reads.fq.gz ./1/1.Cleandata/1.filtered_reads.fq.gz # -- Alignment and Detect structural variants in each sample using SVIM (failed due to the strange output from SVIM!) #mamba install -c bioconda ngmlr mamba install -c bioconda svim for sample in WT 1 2 3 4 5 7 8 9 10; do svim reads --aligner ngmlr --nanopore svim_reads_ngmlr_${sample} F24A430001437_BACctmoD/BGI_result/Separate/${sample}/1.Cleandata/${sample}.filtered_reads.fq.gz CP020463.fasta --cores 10; done for sample in WT 1 2 3 4 5 7 8 9 10; do for sample in 1; do #INS,INV,DUP:TANDEM,DUP:INT,BND svim reads svim_reads_minimap2_${sample} F24A430001437_BACctmoD/BGI_result/Separate/${sample}/1.Cleandata/${sample}.filtered_reads.fq.gz CP020463.fasta --aligner minimap2 --nanopore --cores 20 --types INS --min_sv_size 100 --sequence_allele --insertion_sequences --read_names; done #svim alignment svim_alignment_minmap2_1_re 1.sorted.bam CP020463_.fasta --types INS --sequence_alleles --insertion_sequences --read_names # -- Results1: Detect structural variants using Minamap2+Sniffles2: Minimap2: A commonly used aligner for nanopore sequencing data. Align Long Reads to the WT Reference using Minimap2 for sample in WT 1 2 3 4 5 7 8 9 10; do minimap2 --MD -t 60 -ax map-ont CP020463.fasta ./batch1_depth25/trycycler_${sample}/reads.fastq | samtools sort -o ${sample}.sorted.bam samtools index ${sample}.sorted.bam done #sniffles -m WT.sorted.bam -v WT.vcf -s 10 -l 50 -t 60 # -s 20: Requires at least 20 reads to support an SV for reporting. --> 10 # -l 50: Reports SVs that are at least 50 base pairs long. # -t 4: Uses 4 threads for faster processing. --> 60 for sample in WT 1 2 3 4 5 7 8 9 10; do sniffles -m ${sample}.sorted.bam -v ${sample}.vcf -s 10 -l 50 -t 60 #QUAL < 20 || bcftools filter -e "INFO/SVTYPE != 'INS'" ${sample}.vcf > ${sample}_filtered.vcf done # -- Results2: Detect structural variants using NGMLR+Sniffles2 for sample in WT 1 2 3 4 5 7 8 9 10; do #ERROR: No MD string detected! Check bam file! Otherwise generate using e.g. samtools. --> No results! #sniffles -m svim_reads_minimap2_${sample}/${sample}.filtered_reads.fq.minimap2.coordsorted.bam -v #sniffles_minimap2_${sample}.vcf -s 10 -l 50 -t 60 bcftools filter -e "INFO/SVTYPE != 'INS'" sniffles_minimap2_${sample}.vcf > sniffles_minimap2_${sample}_filtered.vcf #Using sniffles -m svim_reads_ngmlr_${sample}/${sample}.filtered_reads.fq.ngmlr.coordsorted.bam -v sniffles_ngmlr_${sample}.vcf -s 10 -l 50 -t 60 bcftools filter -e "INFO/SVTYPE != 'INS'" sniffles_ngmlr_${sample}.vcf > sniffles_ngmlr_${sample}_filtered.vcf done # -- Compare the results1 and results2, and check them each position in IGV! #minimap2+sniffles2 (base) jhuang@WS-2290C:/mnt/md1/DATA_md1/Data_Patricia_Transposon$ cut -d$'\t' -f2 WT_filtered.vcf | grep -v "##" POS 1855752 (base) jhuang@WS-2290C:/mnt/md1/DATA_md1/Data_Patricia_Transposon$ cut -d$'\t' -f2 1_filtered.vcf | grep -v "##" POS 529416 1855752 2422820 (base) jhuang@WS-2290C:/mnt/md1/DATA_md1/Data_Patricia_Transposon$ cut -d$'\t' -f2 2_filtered.vcf | grep -v "##" POS 529416 1855752 2422820 2424590 (base) jhuang@WS-2290C:/mnt/md1/DATA_md1/Data_Patricia_Transposon$ cut -d$'\t' -f2 3_filtered.vcf | grep -v "##" POS 529416 529416 529418 1855752 2422820 (base) jhuang@WS-2290C:/mnt/md1/DATA_md1/Data_Patricia_Transposon$ cut -d$'\t' -f2 4_filtered.vcf | grep -v "##" POS 55682 529416 1855752 2422820 2424590 (base) jhuang@WS-2290C:/mnt/md1/DATA_md1/Data_Patricia_Transposon$ cut -d$'\t' -f2 5_filtered.vcf | grep -v "##" POS 529416 1855752 2422820 (base) jhuang@WS-2290C:/mnt/md1/DATA_md1/Data_Patricia_Transposon$ cut -d$'\t' -f2 7_filtered.vcf | grep -v "##" POS 518217 1855752 2424590 (base) jhuang@WS-2290C:/mnt/md1/DATA_md1/Data_Patricia_Transposon$ cut -d$'\t' -f2 8_filtered.vcf | grep -v "##" POS 529416 1855752 2422820 (base) jhuang@WS-2290C:/mnt/md1/DATA_md1/Data_Patricia_Transposon$ cut -d$'\t' -f2 9_filtered.vcf | grep -v "##" POS 529416 1855752 2422820 2424590 (base) jhuang@WS-2290C:/mnt/md1/DATA_md1/Data_Patricia_Transposon$ cut -d$'\t' -f2 10_filtered.vcf | grep -v "##" POS 529416 1855752 2422818 2424590 #ngmlr+sniffles2 (base) jhuang@WS-2290C:/mnt/md1/DATA_md1/Data_Patricia_Transposon$ cut -d$'\t' -f2 sniffles_ngmlr_WT_filtered.vcf | grep -v "##" POS (base) jhuang@WS-2290C:/mnt/md1/DATA_md1/Data_Patricia_Transposon$ cut -d$'\t' -f2 sniffles_ngmlr_1_filtered.vcf | grep -v "##" POS 529419 2422819 (base) jhuang@WS-2290C:/mnt/md1/DATA_md1/Data_Patricia_Transposon$ cut -d$'\t' -f2 sniffles_ngmlr_2_filtered.vcf | grep -v "##" POS 529418 2422820 (base) jhuang@WS-2290C:/mnt/md1/DATA_md1/Data_Patricia_Transposon$ cut -d$'\t' -f2 sniffles_ngmlr_3_filtered.vcf | grep -v "##" POS 529418 2422820 (base) jhuang@WS-2290C:/mnt/md1/DATA_md1/Data_Patricia_Transposon$ cut -d$'\t' -f2 sniffles_ngmlr_4_filtered.vcf | grep -v "##" POS 529419 2422820 (base) jhuang@WS-2290C:/mnt/md1/DATA_md1/Data_Patricia_Transposon$ cut -d$'\t' -f2 sniffles_ngmlr_5_filtered.vcf | grep -v "##" POS 529419 2422820 (base) jhuang@WS-2290C:/mnt/md1/DATA_md1/Data_Patricia_Transposon$ cut -d$'\t' -f2 sniffles_ngmlr_7_filtered.vcf | grep -v "##" POS 518219 2422820 (base) jhuang@WS-2290C:/mnt/md1/DATA_md1/Data_Patricia_Transposon$ cut -d$'\t' -f2 sniffles_ngmlr_8_filtered.vcf | grep -v "##" POS 529419 2422820 (base) jhuang@WS-2290C:/mnt/md1/DATA_md1/Data_Patricia_Transposon$ cut -d$'\t' -f2 sniffles_ngmlr_9_filtered.vcf | grep -v "##" POS 529419 2422820 (base) jhuang@WS-2290C:/mnt/md1/DATA_md1/Data_Patricia_Transposon$ cut -d$'\t' -f2 sniffles_ngmlr_10_filtered.vcf | grep -v "##" POS 529418 2422820 #~/Tools/csv2xls-0.4/csv_to_xls.py sniffles_ngmlr_WT_filtered.vcf sniffles_ngmlr_1_filtered.vcf sniffles_ngmlr_2_filtered.vcf sniffles_ngmlr_3_filtered.vcf sniffles_ngmlr_4_filtered.vcf sniffles_ngmlr_5_filtered.vcf sniffles_ngmlr_7_filtered.vcf sniffles_ngmlr_8_filtered.vcf sniffles_ngmlr_9_filtered.vcf sniffles_ngmlr_10_filtered.vcf -d$'\t' -o putative_transposons2.xls # -- Filtering low-complexity insertions using RepeatMasker (TODO: how to use RepeatModeler to generate own lib?) python vcf_to_fasta.py variants.vcf variants.fasta #python filter_low_complexity.py variants.fasta filtered_variants.fasta retained_variants.fasta #Using RepeatMasker to filter the low-complexity fasta, the used h5 lib is /home/jhuang/mambaforge/envs/transposon_long/share/RepeatMasker/Libraries/Dfam.h5 #1.9G python /home/jhuang/mambaforge/envs/transposon_long/share/RepeatMasker/famdb.py -i /home/jhuang/mambaforge/envs/transposon_long/share/RepeatMasker/Libraries/Dfam.h5 names 'bacteria' | head Exact Matches ============= 2 bacteria (blast name), Bacteria
(scientific name), eubacteria (genbank common name), Monera (in-part), Procaryotae (in-part), Prokaryota (in-part), Prokaryotae (in-part), prokaryote (in-part), prokaryotes (in-part) Non-exact Matches ================= 1783272 Terrabacteria group (scientific name) 91061 Bacilli (scientific name), Bacilli Ludwig et al. 2010 (authority), Bacillus/Lactobacillus/Streptococcus group (synonym), Firmibacteria (synonym), Firmibacteria Murray 1988 (authority) 1239 Bacillaeota (synonym), Bacillaeota Oren et al. 2015 (authority), Bacillota (synonym), Bacillus/Clostridium group (synonym), clostridial firmicutes (synonym), Clostridium group firmicutes (synonym), Firmacutes (synonym), firmicutes (blast name), Firmicutes (scientific name), Firmicutes corrig. Gibbons and Murray 1978 (authority), Low G+C firmicutes (synonym), low G+C Gram-positive bacteria (common name), low GC Gram+ (common name) Summary of Classes within Firmicutes: * Bacilli (includes many common pathogenic and non-pathogenic Gram-positive bacteria, taxid=91061) * Bacillus (e.g., Bacillus subtilis, Bacillus anthracis) * Staphylococcus (e.g., Staphylococcus aureus, Staphylococcus epidermidis) * Streptococcus (e.g., Streptococcus pneumoniae, Streptococcus pyogenes) * Listeria (e.g., Listeria monocytogenes) * Clostridia (includes many anaerobic species like Clostridium and Clostridioides) * Erysipelotrichia (intestinal bacteria, some pathogenic) * Tissierellia (less-studied, veterinary relevance) * Mollicutes (cell wall-less, includes Mycoplasma species) * Negativicutes (includes some Gram-negative, anaerobic species) RepeatMasker -species Bacilli -pa 4 -xsmall variants.fasta python extract_unmasked_seq.py variants.fasta.masked unmasked_variants.fasta #bcftools filter -i ‘QUAL>30 && INFO/SVLEN>100’ variants.vcf -o filtered.vcf # #bcftools view -i ‘SVTYPE=”INS”‘ variants.vcf | bcftools query -f ‘%CHROM\t%POS\t%REF\t%ALT\t%INFO\n’ > insertions.txt #mamba install -c bioconda vcf2fasta #vcf2fasta variants.vcf -o insertions.fasta #grep “SEQS” variants.vcf | awk ‘{ print $1, $2, $4, $5, $8 }’ > insertions.txt #python3 filtering_low_complexity.py # #vcftools –vcf input.vcf –recode –out filtered_output –minSVLEN 100 #bcftools filter -e ‘INFO/SEQS ~ “^(G+|C+|T+|A+){4,}”‘ variants.vcf -o filtered.vcf # — calculate the percentage of reads To calculate the percentage of reads that contain the insertion from the VCF entry, use the INFO and FORMAT fields provided in the VCF record. Step 1: Extract Relevant Information In the provided VCF entry: RE (Reads Evidence): 733 – the total number of reads supporting the insertion. GT (Genotype): 1/1 – this indicates a homozygous insertion, meaning all reads covering this region are expected to have the insertion. AF (Allele Frequency): 1 – a 100% allele frequency, indicating that every read in this sample supports the insertion. DR (Depth Reference): 0 – the number of reads supporting the reference allele. DV (Depth Variant): 733 – the number of reads supporting the variant allele (insertion). Step 2: Calculate Percentage of Reads Supporting the Insertion Using the formula: Percentage of reads with insertion=(DVDR+DV)×100 Percentage of reads with insertion=(DR+DVDV)×100 Substitute the values: Percentage=(7330+733)×100=100% Percentage=(0+733733)×100=100% Conclusion Based on the VCF record, 100% of the reads support the insertion, indicating that the insertion is fully present in the sample (homozygous insertion). This is consistent with the AF=1 and GT=1/1 fields. -
(failed) using own scripts direct analyze the bam-file via cigarString (failed due to too many short insertions!)
transposons.fasta is a file containing the transposon sequences in FASTA format. python your_script.py input.bam reference.fasta transposons.fasta #Transposon_Sequence Insertion_Frequency #Tn5 10 #Tn10 5 #Unknown 3 python putative_transposons_with_counts.py mapping_WT.sorted.bam CP020463.fasta rule trim_short_reads: input: "/data/short-reads.fq.gz" output: "/data/trimmed-short-reads.fasta" shell: "python3 trim_by_tag_length.py /data/short-reads.fq.gz 10 > /data/trimmed-short-reads.fasta" rule trim_long_reads: input: "/data/long-reads.fq.gz" output: "/data/trimmed-long-reads.fasta" shell: "python3 trim_by_tag_length.py /data/long-reads.fq.gz 92 > /data/trimmed-long-reads.fasta" rule install_bwa: output: "bwa-mem2-2.0pre2_x64-linux/bwa-mem2" shell: "curl -L https://github.com/bwa-mem2/bwa-mem2/releases/download/v2.0pre2/bwa-mem2-2.0pre2_x64-linux.tar.bz2 | tar jxf -" rule map_short_reads: input: "bwa-mem2-2.0pre2_x64-linux/bwa-mem2", "/data/reference.fasta", "/data/trimmed-short-reads.fasta" output: "/data/mapping.sam" shell: """ bwa-mem2-2.0pre2_x64-linux/bwa-mem2 index /data/reference.fasta bwa-mem2-2.0pre2_x64-linux/bwa-mem2 mem /data/reference.fasta /data/trimmed-short-reads.fasta > /data/mapping.sam """ rule map_long_reads: input: "/data/reference.fasta", "/data/trimmed-long-reads.fasta" output: "/data/mapping.bam" conda: "minimap2.yml" shell: """ minimap2 -x map-ont -d reference /data/reference.fasta > /dev/null 2>&1 minimap2 -c -a -o /data/mapping.nonunique.sam -N 1 -x map-ont reference /data/trimmed-long-reads.fasta samtools view -bq 1 /data/mapping.nonunique.sam > /data/mapping.bam """ rule convert_sam_to_bam: input: "/data/mapping.sam" output: "/data/mapping.bam", conda: "samtools.yml" shell: "samtools view -S -b /data/mapping.sam > /data/mapping.bam" rule get_unmapped_reads: input: "/data/mapping.bam" output: "/data/mapping.sorted.bam" conda: "samtools.yml" shell: """ # samtools view -f 4 /data/mapping.bam > /data/unmapped.sam # samtools view -S -b /data/unmapped.sam > /data/unmapped.bam # samtools bam2fq /data/unmapped.bam | seqtk seq -A - > /data/unmapped.fa samtools sort /data/mapping.bam -o /data/mapping.sorted.bam samtools index /data/mapping.sorted.bam """ rule create_insertion_plot: input: "/data/mapping.sorted.bam" output: "/data/summary-stats.tsv" shell: """ python3 ~/Scripts/sam_to_insert_plot.py /data/mapping.sorted.bam /data/reference.fasta > /data/summary-stats.tsv """
-
Polishing of assembly: Use tools like Medaka to refine variant calls by leveraging consensus sequences derived from nanopore data.
mamba install -c bioconda medaka medaka-consensus -i aligned_reads.bam -r reference.fasta -o polished_output -t 4
-
Compare Insertions Across Samples
Merge Variants Across Samples: Use SURVIVOR to merge and compare the detected insertions in all samples against the WT: SURVIVOR merge input_vcfs.txt 1000 1 1 1 0 30 merged.vcf Input: List of VCF files from Sniffles2. Output: A consolidated VCF file with shared and unique variants. Filter WT Insertions: Identify transposons present only in samples 1–9 by subtracting WT variants using bcftools: bcftools isec WT.vcf merged.vcf -p comparison_results
-
Validate and Visualize
Visualize with IGV: Use IGV to inspect insertion sites in the alignment and confirm quality. igv.sh Validate Findings: Perform PCR or additional sequencing for key transposon insertion sites to confirm results.
-
Alternatives to TEPID for Long-Read Data
If you’re looking for transposon-specific tools for long reads: REPET: A robust transposon annotation tool compatible with assembled genomes. EDTA (Extensive de novo TE Annotator): A pipeline to identify, classify, and annotate transposons. Works directly on your assembled genomes. perl EDTA.pl --genome WT.fasta --type all
-
The WT.vcf file in the pipeline is generated by detecting structural variants (SVs) in the wild-type (WT) genome aligned against itself or using it as a baseline reference. Here’s how you can generate the WT.vcf:
Steps to Generate WT.vcf 1. Align WT Reads to the WT Reference Genome The goal here is to create an alignment of the WT sequencing data to the WT reference genome to detect any self-contained structural variations, such as native insertions, deletions, or duplications. Command using Minimap2: minimap2 -ax map-ont WT.fasta WT_reads.fastq | samtools sort -o WT.sorted.bam Index the BAM file: samtools index WT.sorted.bam 2. Detect Structural Variants with Sniffles2 Run Sniffles2 on the WT alignment to call structural variants: sniffles --input WT.sorted.bam --vcf WT.vcf This step identifies: Native transposons and insertions present in the WT genome. Other structural variants that are part of the reference genome or sequencing artifacts. Key parameters to consider: --min_support: Adjust based on your WT sequencing coverage. --max_distance: Define proximity for merging variants. --min_length: Set a minimum SV size (e.g., >50 bp for transposons).
-
Clean and Filter the WT.vcf, Variant Filtering: Remove low-confidence variants based on read depth, quality scores, or allele frequency.
To ensure the WT.vcf only includes relevant transposons or SVs: Use bcftools or similar tools to filter out low-confidence variants: bcftools filter -e "QUAL < 20 || INFO/SVTYPE != 'INS'" WT.vcf > WT_filtered.vcf bcftools filter -e "QUAL < 1 || INFO/SVTYPE != 'INS'" 1_.vcf > 1_filtered_.vcf
-
NOTE that in this pipeline, the WT.fasta (reference genome) is typically a high-quality genome sequence from a database or a well-annotated version of your species’ genome. It is not assembled from the WT.fastq sequencing reads in this context. Here’s why:
Why Use a Reference Genome (WT.fasta) from a Database? Higher Quality and Completeness: Database references (e.g., NCBI, Ensembl) are typically well-assembled, highly polished, and annotated. They serve as a reliable baseline for variant detection. Consistency: Using a standard reference ensures consistent comparisons across your WT and samples (1–9). Variants detected will be relative to this reference, not influenced by possible assembly errors. Saves Time: Assembling a reference genome from WT reads requires significant computational effort. Using an existing reference streamlines the analysis. Alternative: Assembling WT from FASTQ If you don’t have a high-quality reference genome (WT.fasta) and must rely on your WT FASTQ reads: Assemble the genome from your WT.fastq: Use long-read assemblers like Flye, Canu, or Shasta to create a draft genome. flye --nano-raw WT.fastq --out-dir WT_assembly --genome-size
Polish the assembly using tools like Racon (with the same reads) or Medaka for higher accuracy. Use the assembled and polished genome as your WT.fasta reference for further steps. Key Takeaways: If you have access to a reliable, high-quality reference genome, use it as the WT.fasta. Only assemble WT.fasta from raw reads (WT.fastq) if no database reference is available for your organism. -
Annotate Transposable Elements: Tools like ANNOVAR or SnpEff provide functional insights into the detected variants.
# -- (successful!) MANUALLY Search for all found insertion sequences at https://tncentral.ncc.unesp.br/blast/ ! # Or use the program available at https://github.com/danillo-alvarenga/tncomp_finder if there are numerous matches. #https://tncentral.ncc.unesp.br/report/te/Tn551-Y13600.1 # -- (failed!) try TEPID for annotation mamba install tepid=0.10 -c bioconda #(tepid_env) for sample in WT 1 2 3 4 5 7 8 9 10; do tepid-map-se -x CP020463 -p 10 -n ${sample}_tepid -q ../batch1_depth25/trycycler_${sample}/reads.fastq; tepid-discover -k -i -p 10 -n ${sample}_tepid -c ${sample}_tepid --se; done tepid-discover -k -i -p 10 -n 1_tepid -c 1.sorted.bam --se; tepid-refine [-h] [--version] [-k] [-i INSERTIONS] [-d DELETIONS] [-p PROC] -t TE -n NAME -c CONC -s SPLIT -a AL # -- (failed!) try EDTA for annotation https://github.com/oushujun/EDTA (transposon_long) mamba install -c conda-forge -c bioconda edta mamba install bioconda::rmblast # cd RepeatMasker; ./configure EDTA.pl --genome CP020463.fasta --species others --threads 40 For general-purpose TE annotation: EDTA, RepeatMasker, or RepeatScout are your best options. For de novo repeat identification: RepeatScout is highly effective. For LTR retrotransposons: Use LTR_retriever. For bacterial-specific annotations: Transposome, TEfinder, and ISfinder can be useful.
-
Validation: Cross-validate with short-read sequencing data if available.