-
Input data
# name condition # ---------------------------------------------- # 0403_WaGa_wt parental_cells_1.fastq.gz # #0505_WaGa_wt_EV_RNA untreated_1.fastq.gz # #0505_WaGa_sT_DMSO_EV_RNA DMSO_control_1.fastq.gz # #0505_WaGa_sT_Dox_EV_RNA sT_knockdown_1.fastq.gz # #0505_WaGa_scr_DMSO_EV_RNA scr_DMSO_control_1.fastq.gz # #0505_WaGa_scr_Dox_EV_RNA scr_control_1.fastq.gz # #1905_WaGa_wt_EV_RNA untreated_2.fastq.gz # #1905_WaGa_sT_DMSO_EV_RNA DMSO_control_2.fastq.gz # #1905_WaGa_sT_Dox_EV_RNA sT_knockdown_2.fastq.gz # #1905_WaGa_scr_DMSO_EV_RNA scr_DMSO_control_2.fastq.gz # #1905_WaGa_scr_Dox_EV_RNA scr_control_2.fastq.gz # # WaGa_wt_cells_1 parental_cells_2.fastq.gz # WaGa_wt_cells_2 parental_cells_3.fastq.gz # #2001_WaGa_sT_DMSO DMSO_control_3.fastq.gz # #2001_WaGa_sT_Dox sT_knockdown_3.fastq.gz # #2001_WaGa_scr_DMSO scr_DMSO_control_3.fastq.gz # #2001_WaGa_scr_Dox scr_control_3.fastq.gz # # WaGa_wt_cells_1 parental_cells_2_R2.fastq.gz # WaGa_wt_cells_2 parental_cells_3_R2.fastq.gz # #2001_WaGa_sT_DMSO DMSO_control_3_R2.fastq.gz # #2001_WaGa_sT_Dox sT_knockdown_3_R2.fastq.gz # #2001_WaGa_scr_DMSO scr_DMSO_control_3_R2.fastq.gz # #2001_WaGa_scr_Dox scr_control_3_R2.fastq.gz mkdir ~/DATA/Data_Ute/Data_Ute_smallRNA_7/raw_data cd raw_data ln -s ~/DATA/Data_Ute/Data_Ute_smallRNA_3/220617_NB501882_0371_AH7572BGXM/nf774/0403_WaGa_wt_S20_R1_001.fastq.gz parental_cells_1.fastq.gz ln -s ~/DATA/Data_Ute/Data_Ute_smallRNA_7/231016_NB501882_0435_AHG7HMBGXV/nf930/01_0505_WaGa_wt_EV_RNA_S1_R1_001.fastq.gz untreated_1.fastq.gz ln -s ~/DATA/Data_Ute/Data_Ute_smallRNA_7/231016_NB501882_0435_AHG7HMBGXV/nf931/02_0505_WaGa_sT_DMSO_EV_RNA_S2_R1_001.fastq.gz DMSO_control_1.fastq.gz ln -s ~/DATA/Data_Ute/Data_Ute_smallRNA_7/231016_NB501882_0435_AHG7HMBGXV/nf932/03_0505_WaGa_sT_Dox_EV_RNA_S3_R1_001.fastq.gz sT_knockdown_1.fastq.gz ln -s ~/DATA/Data_Ute/Data_Ute_smallRNA_7/231016_NB501882_0435_AHG7HMBGXV/nf933/04_0505_WaGa_scr_DMSO_EV_RNA_S4_R1_001.fastq.gz scr_DMSO_control_1.fastq.gz ln -s ~/DATA/Data_Ute/Data_Ute_smallRNA_7/231016_NB501882_0435_AHG7HMBGXV/nf934/05_0505_WaGa_scr_Dox_EV_RNA_S5_R1_001.fastq.gz scr_control_1.fastq.gz ln -s ~/DATA/Data_Ute/Data_Ute_smallRNA_7/231016_NB501882_0435_AHG7HMBGXV/nf935/06_1905_WaGa_wt_EV_RNA_S6_R1_001.fastq.gz untreated_2.fastq.gz ln -s ~/DATA/Data_Ute/Data_Ute_smallRNA_7/231016_NB501882_0435_AHG7HMBGXV/nf936/07_1905_WaGa_sT_DMSO_EV_RNA_S7_R1_001.fastq.gz DMSO_control_2.fastq.gz ln -s ~/DATA/Data_Ute/Data_Ute_smallRNA_7/231016_NB501882_0435_AHG7HMBGXV/nf937/08_1905_WaGa_sT_Dox_EV_RNA_S8_R1_001.fastq.gz sT_knockdown_2.fastq.gz ln -s ~/DATA/Data_Ute/Data_Ute_smallRNA_7/231016_NB501882_0435_AHG7HMBGXV/nf938/09_1905_WaGa_scr_DMSO_EV_RNA_S9_R1_001.fastq.gz scr_DMSO_control_2.fastq.gz ln -s ~/DATA/Data_Ute/Data_Ute_smallRNA_7/231016_NB501882_0435_AHG7HMBGXV/nf939/10_1905_WaGa_scr_Dox_EV_RNA_S10_R1_001.fastq.gz scr_control_2.fastq.gz ln -s ~/DATA/Data_Ute/Data_Ute_smallRNA_7/250411_VH00358_135_AAGKGLHM5/nf961/WaGaWTcells_1_S1_R1_001.fastq.gz parental_cells_2.fastq.gz ln -s ~/DATA/Data_Ute/Data_Ute_smallRNA_7/250411_VH00358_135_AAGKGLHM5/nf962/WaGaWTcells_2_S2_R1_001.fastq.gz parental_cells_3.fastq.gz ln -s ~/DATA/Data_Ute/Data_Ute_smallRNA_7/250411_VH00358_135_AAGKGLHM5/nf971/2001_WaGa_sT_DMSO_S3_R1_001.fastq.gz DMSO_control_3.fastq.gz ln -s ~/DATA/Data_Ute/Data_Ute_smallRNA_7/250411_VH00358_135_AAGKGLHM5/nf972/2001_WaGa_sT_Dox_S4_R1_001.fastq.gz sT_knockdown_3.fastq.gz ln -s ~/DATA/Data_Ute/Data_Ute_smallRNA_7/250411_VH00358_135_AAGKGLHM5/nf973/2001_WaGa_scr_DMSO_S5_R1_001.fastq.gz scr_DMSO_control_3.fastq.gz ln -s ~/DATA/Data_Ute/Data_Ute_smallRNA_7/250411_VH00358_135_AAGKGLHM5/nf974/2001_WaGa_scr_Dox_S6_R1_001.fastq.gz scr_control_3.fastq.gz ln -s ~/DATA/Data_Ute/Data_Ute_smallRNA_7/250411_VH00358_135_AAGKGLHM5/nf961/WaGaWTcells_1_S1_R2_001.fastq.gz parental_cells_2_R2.fastq.gz ln -s ~/DATA/Data_Ute/Data_Ute_smallRNA_7/250411_VH00358_135_AAGKGLHM5/nf962/WaGaWTcells_2_S2_R2_001.fastq.gz parental_cells_3_R2.fastq.gz ln -s ~/DATA/Data_Ute/Data_Ute_smallRNA_7/250411_VH00358_135_AAGKGLHM5/nf971/2001_WaGa_sT_DMSO_S3_R2_001.fastq.gz DMSO_control_3_R2.fastq.gz ln -s ~/DATA/Data_Ute/Data_Ute_smallRNA_7/250411_VH00358_135_AAGKGLHM5/nf972/2001_WaGa_sT_Dox_S4_R2_001.fastq.gz sT_knockdown_3_R2.fastq.gz ln -s ~/DATA/Data_Ute/Data_Ute_smallRNA_7/250411_VH00358_135_AAGKGLHM5/nf973/2001_WaGa_scr_DMSO_S5_R2_001.fastq.gz scr_DMSO_control_3_R2.fastq.gz ln -s ~/DATA/Data_Ute/Data_Ute_smallRNA_7/250411_VH00358_135_AAGKGLHM5/nf974/2001_WaGa_scr_Dox_S6_R2_001.fastq.gz scr_control_3_R2.fastq.gz #awk '{print $2}' temp3
-
Adapter trimming
#some common adapter sequences from different kits for reference: # - TruSeq Small RNA (Illumina): TGGAATTCTCGGGTGCCAAGG # - Small RNA Kits V1 (Illumina): TCGTATGCCGTCTTCTGCTTGT # - Small RNA Kits V1.5 (Illumina): ATCTCGTATGCCGTCTTCTGCTTG # - NEXTflex Small RNA Sequencing Kit v3 for Illumina Platforms (Bioo Scientific): TGGAATTCTCGGGTGCCAAGG # - LEXOGEN Small RNA-Seq Library Prep Kit (Illumina): TGGAATTCTCGGGTGCCAAGGAACTCCAGTCAC * mkdir trimmed; cd trimmed for sample in parental_cells_1 untreated_1 DMSO_control_1 sT_knockdown_1 scr_DMSO_control_1 scr_control_1 untreated_2 DMSO_control_2 sT_knockdown_2 scr_DMSO_control_2 scr_control_2 parental_cells_2 parental_cells_3 DMSO_control_3 sT_knockdown_3 scr_DMSO_control_3 scr_control_3 parental_cells_2_R2 parental_cells_3_R2 DMSO_control_3_R2 sT_knockdown_3_R2 scr_DMSO_control_3_R2 scr_control_3_R2; do echo "------------------------------------ cutadapting the ${sample} -----------------------------------" >> LOG cutadapt -a TGGAATTCTCGGGTGCCAAGGAACTCCAGTCAC -q 20 --minimum-length 5 --trim-n -o ${sample}.fastq.gz ../raw_data/${sample}.fastq.gz >> LOG done # In LOG file to look the differences of the R1 and R2 reads based on the statistics of trimming. #Reads with adapters: 10,114,799 (79.9%) #Reads with adapters: 240,366 (1.9%) #Reads with adapters: 233,380 (1.6%) #Reads with adapters: 230,664 (1.3%) #Reads with adapters: 207,717 (1.3%) #Reads with adapters: 186,080 (1.2%) #Reads with adapters: 577,429 (1.5%) #Reads with adapters: 268,867 (1.7%) #Reads with adapters: 325,300 (1.4%) #Reads with adapters: 314,540 (1.5%) #Reads with adapters: 264,349 (1.5%) #Reads with adapters: 299,677 (0.7%) #Reads with adapters: 108,801 (0.6%) #Reads with adapters: 5,095 (0.0%) #Reads with adapters: 6,989 (0.0%) #Reads with adapters: 3,868 (0.0%) #Reads with adapters: 2,173 (0.0%) #Reads with adapters: 615,334 (1.4%) #Reads with adapters: 258,388 (1.5%) #Reads with adapters: 294,325 (1.4%) #Reads with adapters: 336,932 (1.8%) #Reads with adapters: 239,288 (2.0%) #Reads with adapters: 117,544 (1.5%) #Alternatively, we can also cut adapter in the exceRpt built-in functions since 'grep "TGGAATTCTCGGGTGCCAAGGAACTCCAGTCAC" /mnt/nvme0n1p1/MyexceRptDatabase/adapters/adapters.fa | wc -l' results in 48 records. However, explicitly cut adapter before is more ensured. #TODO: check if the R1 and R2 has the similar data distribution? Then decide if only R1 or both used for the downstream analysis? cat parental_cells_2.fastq.gz parental_cells_2_R2.fastq.gz > parental_cells_2_merged.fastq.gz cat parental_cells_3.fastq.gz parental_cells_3_R2.fastq.gz > parental_cells_3_merged.fastq.gz cat DMSO_control_3.fastq.gz DMSO_control_3_R2.fastq.gz > DMSO_control_3_merged.fastq.gz cat sT_knockdown_3.fastq.gz sT_knockdown_3_R2.fastq.gz > sT_knockdown_3_merged.fastq.gz cat scr_DMSO_control_3.fastq.gz scr_DMSO_control_3_R2.fastq.gz > scr_DMSO_control_3_merged.fastq.gz cat scr_control_3.fastq.gz scr_control_3_R2.fastq.gz > scr_control_3_merged.fastq.gz #Scenario Option to use #----------------------------- #Trimming Read 1 only -a #Trimming Read 2 only -a #Trimming paired-end together -a and -A #cutadapt -a TGGAATTCTCGGGTGCCAAGGAACTCCAGTCAC -q 20 --minimum-length 5 --trim-n -o ${sample}_R2_trimmed.fastq.gz ../raw_data/${sample}_R2.fastq.gz cutadapt \ -a TGGAATTCTCGGGTGCCAAGGAACTCCAGTCAC \ -A TGGAATTCTCGGGTGCCAAGGAACTCCAGTCAC \ -q 20 --minimum-length 5 --trim-n \ -o ${sample}_R1_trimmed.fastq.gz -p ${sample}_R2_trimmed.fastq.gz \ ../raw_data/${sample}_R1.fastq.gz ../raw_data/${sample}_R2.fastq.gz # -- check if it is necessary to remove adapter from 5'-end -- #(Option_1) cutadapt -g TGGAATTCTCGGGTGCCAAGGAACTCCAGTCAC -o /dev/null --report=minimal 0505_WaGa_wt_cutadapted.fastq.gz --> The trimming statistics in the output will show how often 5'-end adapters were removed. #(Option 2) zcat your_sample.fastq.gz | grep 'TGGAATTCTCGGGTGCCAAGGAACTCCAGTCAC' | head -n 20 #(Option 3) fastqc your_sample.fastq.gz #Open the generated HTML report and check: # The "Overrepresented sequences" section for adapter sequences. # The "Per base sequence content" plot to see if there are unexpected sequences at the start of reads. #(If check results shows both ends contain adapter) cutadapt -g TGGAATTCTCGGGTGCCAAGGAACTCCAGTCAC -a TGGAATTCTCGGGTGCCAAGGAACTCCAGTCAC -q 20 --minimum-length 10 -o ${sample}_trimmed.fastq.gz ${sample}.fastq.gz >> LOG2 # -g → Trims 5'-end adapters # -a → Trims 3'-end adapters; -a TGGAATTCTCGGGTGCCAAGGAACTCCAGTCAC → Specifies the adapter sequence to be removed from the 3' end of the reads. The sequence provided is common in RNA-seq libraries (e.g., Illumina small RNA sequencing). # -q 20 → Performs quality trimming at both read ends, removing bases with a Phred quality score below 20.
-
Install exceRpt (https://github.gersteinlab.org/exceRpt/)
docker pull rkitchen/excerpt mkdir MyexceRptDatabase cd /mnt/nvme0n1p1/MyexceRptDatabase wget http://org.gersteinlab.excerpt.s3-website-us-east-1.amazonaws.com/exceRptDB_v4_hg38_lowmem.tgz tar -xvf exceRptDB_v4_hg38_lowmem.tgz #http://org.gersteinlab.excerpt.s3-website-us-east-1.amazonaws.com/exceRptDB_v4_hg19_lowmem.tgz #http://org.gersteinlab.excerpt.s3-website-us-east-1.amazonaws.com/exceRptDB_v4_hg38_lowmem.tgz #http://org.gersteinlab.excerpt.s3-website-us-east-1.amazonaws.com/exceRptDB_v4_mm10_lowmem.tgz wget http://org.gersteinlab.excerpt.s3-website-us-east-1.amazonaws.com/exceRptDB_v4_EXOmiRNArRNA.tgz tar -xvf exceRptDB_v4_EXOmiRNArRNA.tgz wget http://org.gersteinlab.excerpt.s3-website-us-east-1.amazonaws.com/exceRptDB_v4_EXOGenomes.tgz tar -xvf exceRptDB_v4_EXOGenomes.tgz
-
Run exceRpt
#[---- REAL_RUNNING_COMPLETE_DB ---->] #NOTE that if not renamed in the input files, then have to RENAME all files recursively by removing "_cutadapted.fastq" in all names in _CORE_RESULTS_v4.6.3.tgz (first unzip, removing, then zip, mv to ../results_g). cd trimmed #for file in *_cutadapted.fastq.gz; do # echo "mv \"$file\" \"${file/_cutadapted.fastq/}\"" #done for file in *.fastq.gz; do echo "mv \"$file\" \"${file/.fastq/}\"" done mkdir results_exo6 for sample in parental_cells_2 parental_cells_3 DMSO_control_3 sT_knockdown_3 scr_DMSO_control_3 scr_control_3 parental_cells_2_R2 parental_cells_3_R2 DMSO_control_3_R2 sT_knockdown_3_R2 scr_DMSO_control_3_R2 scr_control_3_R2 parental_cells_2_merged parental_cells_3_merged DMSO_control_3_merged sT_knockdown_3_merged scr_DMSO_control_3_merged scr_control_3_merged parental_cells_1 untreated_1 DMSO_control_1 sT_knockdown_1 scr_DMSO_control_1 scr_control_1 untreated_2 DMSO_control_2 sT_knockdown_2 scr_DMSO_control_2 scr_control_2; do docker run -v ~/DATA/Data_Ute/Data_Ute_smallRNA_7/trimmed:/exceRptInput \ -v ~/DATA/Data_Ute/Data_Ute_smallRNA_7/results_exo6:/exceRptOutput \ -v /mnt/nvme0n1p1/MyexceRptDatabase:/exceRpt_DB \ -t rkitchen/excerpt \ INPUT_FILE_PATH=/exceRptInput/${sample}.gz MAIN_ORGANISM_GENOME_ID=hg38 N_THREADS=50 JAVA_RAM='200G' MAP_EXOGENOUS=on done #TODO: DEBUG running exceRpt within docker container #docker run -it --rm \ # -v ~/DATA/Data_Ute/Data_Ute_smallRNA_7/trimmed:/exceRptInput \ # -v ~/DATA/Data_Ute/Data_Ute_smallRNA_7/results_exo6:/exceRptOutput \ # -v /mnt/nvme0n1p1/MyexceRptDatabase:/exceRpt_DB \ # --entrypoint bash \ # rkitchen/excerpt #bash /exceRpt_bin/exceRpt_smallRNA INPUT_FILE_PATH=/exceRptInput/sample1.fastq.gz MAIN_ORGANISM_GENOME_ID=hg38 N_THREADS=8 JAVA_RAM='16G' MAP_EXOGENOUS=on #DEBUG the excerpt env docker inspect rkitchen/excerpt:latest # Without /bin/bash → May run and exit immediately #docker run -it rkitchen/excerpt # With /bin/bash → Stays open for interaction docker run -it --entrypoint /bin/bash rkitchen/excerpt #TODO: In the read2 exists the following adapter2, to test if the adapter can be identified and removed with the pipeline!
-
Processing exceRpt output from multiple samples
mkdir summaries_exo6 cd ~/DATA/Data_Ute/Data_Ute_smallRNA_7/exceRpt-master (r_env) jhuang@WS-2290C:~/DATA/Data_Ute/Data_Ute_smallRNA_7/exceRpt-master$ R #WARNING: need to reload the R-script after each change of the script. source("mergePipelineRuns_functions.R") getwd() #[1] "/media/jhuang/Elements/Data_Ute/Data_Ute_smallRNA_7/exceRpt-master" processSamplesInDir("../results_exo6/", "../summaries_exo6") #~/Tools/csv2xls-0.4/csv_to_xls.py exceRpt_miRNA_ReadsPerMillion.txt exceRpt_tRNA_ReadsPerMillion.txt exceRpt_piRNA_ReadsPerMillion.txt -d$'\t' -o exceRpt_results_detailed.xls
-
mv results_exo6 results_exo7; mkdir results_exo6; sudo mv _R2 ../results_exo6; sudo mv _merged ../results_exo6
mkdir summaries_exo7 processSamplesInDir("../results_exo7/", "../summaries_exo7")
-
Re-draw the heatmap plots
# -- R-code -- # Load required library library(dplyr) # Original vectors samples_orig <- c("untreated_2", "parental_cells_1", "parental_cells_2", "parental_cells_3", "scr_control_3", "DMSO_control_3", "scr_DMSO_control_3", "sT_knockdown_3", "untreated_1", "DMSO_control_1", "scr_control_1", "scr_DMSO_control_1", "DMSO_control_2", "sT_knockdown_2", "scr_control_2", "scr_DMSO_control_2", "sT_knockdown_1") categories_orig <- c("reads_used_for_alignment", "genome", "miRNA_sense", "miRNA_antisense", "miRNAprecursor_sense", "miRNAprecursor_antisense", "tRNA_sense", "tRNA_antisense", "piRNA_sense", "piRNA_antisense", "gencode_sense", "gencode_antisense", "circularRNA_sense", "circularRNA_antisense", "not_mapped_to_genome_or_libs", "repetitiveElements", "endogenous_gapped", "exogenous_miRNA", "exogenous_rRNA", "exogenous_genomes") # Provided samples and categories (desired order and format) samples <- c("parental_cells_1","parental_cells_2","parental_cells_3", "untreated_1","untreated_2", "scr_control_1","scr_control_2","scr_control_3", "DMSO_control_1","DMSO_control_2","DMSO_control_3", "scr_DMSO_control_1","scr_DMSO_control_2","scr_DMSO_control_3", "sT_knockdown_1","sT_knockdown_2","sT_knockdown_3") categories <- c("reads_used_for_alignment", "genome", "miRNA", "miRNAprecursor", "tRNA", "piRNA", "gencode", "circularRNA", "not_mapped_to_genome_or_libs", "repetitiveElements", "endogenous_gapped", "exogenous_miRNA", "exogenous_rRNA", "exogenous_genomes") # Original data matrix data_orig <- matrix(c( 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 21.3, 97.4, 99.0, 99.0, 89.2, 91.9, 90.6, 91.0, 44.9, 65.6, 69.2, 73.3, 71.9, 81.4, 78.3, 79.3, 78.5, 3.5, 3.7, 88.7, 86.6, 70.9, 81.1, 77.9, 79.3, 7.1, 12.9, 7.0, 7.5, 14.6, 16.2, 14.7, 15.3, 15.8, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.2, 0.1, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1, 0.1, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.4, 0.5, 2.9, 3.0, 1.7, 1.3, 1.2, 1.4, 25.3, 41.2, 49.0, 52.1, 33.9, 45.3, 41.4, 47.3, 48.8, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1, 0.0, 0.4, 0.5, 0.9, 1.6, 1.1, 1.4, 0.4, 0.4, 0.5, 0.4, 0.6, 0.3, 0.4, 0.4, 0.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.7, 86.0, 5.3, 6.9, 7.9, 4.6, 5.5, 4.9, 8.6, 8.5, 10.8, 11.2, 18.3, 15.7, 16.6, 12.9, 10.8, 0.7, 0.1, 0.2, 0.2, 0.5, 0.2, 0.3, 0.3, 0.3, 0.2, 0.2, 0.2, 0.3, 0.2, 0.3, 0.2, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 78.7, 2.6, 1.0, 1.0, 10.8, 8.1, 9.4, 9.0, 55.1, 34.4, 30.8, 26.7, 28.1, 18.6, 21.7, 20.7, 21.5, 0.1, 0.0, 0.0, 0.0, 0.2, 0.1, 0.1, 0.2, 0.3, 0.3, 0.2, 0.2, 0.2, 0.1, 0.1, 0.1, 0.1, 0.3, 0.0, 0.1, 0.1, 0.7, 0.5, 0.6, 0.5, 1.3, 0.9, 0.8, 0.7, 0.6, 0.3, 0.3, 0.3, 0.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.2, 0.0, 0.0, 0.0, 0.3, 0.2, 0.2, 0.2, 1.5, 0.8, 0.8, 0.8, 0.7, 0.3, 0.3, 0.2, 0.5, 3.5, 0.0, 0.0, 0.0, 2.7, 1.6, 3.2, 2.2, 17.7, 9.3, 9.4, 6.9, 5.6, 2.4, 3.4, 3.3, 4.4), nrow = 20, byrow = TRUE) rownames(data_orig) <- categories_orig colnames(data_orig) <- samples_orig # Collapse sense/antisense merge_rows <- function(prefix) { row1 <- paste0(prefix, "_sense") row2 <- paste0(prefix, "_antisense") if (row1 %in% rownames(data_orig) && row2 %in% rownames(data_orig)) { return(data_orig[row1, ] + data_orig[row2, ]) } else if (row1 %in% rownames(data_orig)) { return(data_orig[row1, ]) } else { return(rep(0, ncol(data_orig))) } } # Construct merged data data_merged <- rbind( reads_used_for_alignment = data_orig["reads_used_for_alignment", ], genome = data_orig["genome", ], miRNA = merge_rows("miRNA"), miRNAprecursor = merge_rows("miRNAprecursor"), tRNA = merge_rows("tRNA"), piRNA = merge_rows("piRNA"), gencode = merge_rows("gencode"), circularRNA = merge_rows("circularRNA"), not_mapped_to_genome_or_libs = data_orig["not_mapped_to_genome_or_libs", ], repetitiveElements = data_orig["repetitiveElements", ], endogenous_gapped = data_orig["endogenous_gapped", ], exogenous_miRNA = data_orig["exogenous_miRNA", ], exogenous_rRNA = data_orig["exogenous_rRNA", ], exogenous_genomes = data_orig["exogenous_genomes", ] ) # Reorder columns to match desired sample order data_final <- data_merged[, samples[samples %in% colnames(data_merged)]] #genome --> human_genome, not_mapped_to_genome_or_libs --> not_mapped_to_human_genome rownames(data_final)[rownames(data_final) == "genome"] <- "human_genome" rownames(data_final)[rownames(data_final) == "not_mapped_to_genome_or_libs"] <- "not_mapped_to_human_genome" # Save to Excel write.xlsx(data_final, file = "distribution_heatmap.xlsx", rowNames = TRUE) # -- Python-code -- python ~/Scripts/plot_distribution_heatmap.py distribution_heatmap.xlsx distribution_heatmap.png import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt ## Load data from Excel file #file_path = "distribution_heatmap.xlsx" # ## Read Excel file, assuming first column is index (row labels) #df = pd.read_excel(file_path, index_col=0) # Convert percentages to decimals data = data / 100.0 # Create DataFrame df = pd.DataFrame(data, index=categories, columns=samples) # Plot heatmap plt.figure(figsize=(14, 6)) sns.heatmap(df, annot=True, cmap="coolwarm", fmt=".3f", linewidths=0.5, cbar_kws={'label': 'Fraction Aligned Reads'}) # Improve layout plt.title("Heatmap of Read Alignments by Category and Sample", fontsize=14) plt.xlabel("Sample", fontsize=12) plt.ylabel("Read Category", fontsize=12) plt.xticks(rotation=15, ha="right", fontsize=10) plt.yticks(rotation=0, fontsize=10) plt.tight_layout() # Save as PNG plt.savefig("distribution_heatmap.png", dpi=300, bbox_inches="tight") # Show plot plt.show()
-
Key steps of log: This log details the execution of a small RNA sequencing data analysis pipeline using the exceRpt tool (version 4.6.3) in a Docker container. The pipeline processes a human small RNA-seq dataset (testData_human.fastq.gz) with the following key steps:
-
Initial Setup
- Docker container launched with mounted volumes for input/output and reference databases.
- Parameters: hg38 genome, 50 threads, 200GB Java memory, exogenous mapping enabled.
- Docker container launched with input/output volume mounts
- 50 threads allocated with 200GB Java memory
- hg38 reference genome specified
-
Preprocessing
- Adapter detection and trimming using known adapter sequences.
- Quality filtering (Phred score ≥20, length ≥18nt).
- Removal of homopolymer-rich reads and low-quality sequences.
- Input FASTQ file decompressed (testData_human.fastq.gz)
- Adapter sequences identified using adapters.fa
- Quality encoding determined (Phred+33/64)
- Adapter clipping performed (TCGTATGCCGTCTTCTGCTTG)
- Quality filtering (Q20, p<80%)
- Homopolymer repeats filtered (max 66% single nt)
-
Contaminant Filtering
- Alignment against UniVec contaminants and ribosomal RNA (rRNA) databases.
- 322 reads processed, with statistics tracked at each step.
-
Endogenous RNA Analysis
- Alignment to human genome (hg38) and transcriptome.
- Quantification of small RNA types:
- miRNA (mature/precursor): Sense strands detected (antisense absent).
- tRNA, piRNA, gencode transcripts: Only sense strands reported.
- circRNA: Not detected in this dataset.
- Coverage and complexity metrics calculated.
-
Exogenous RNA Analysis
- Screened for microbial/viral RNAs:
- miRNA databases (miRBase).
- Ribosomal RNA databases.
- Comprehensive genomic databases (bacteria, plants, metazoa, fungi, viruses).
- Taxonomic classification of exogenous hits performed.
- Screened for microbial/viral RNAs:
-
QC & Results
- QC Result: PASS (based on transcriptome/genome ratio >0.5 and >100k transcriptome reads).
- Key Metrics:
- Input Reads: ~1.5 million (exact count not shown in log).
- Genome Mapped: Majority of reads.
- Transcriptome Complexity: Calculated ratio.
- Core results compressed into testData_human.fastq_CORE_RESULTS_v4.6.3.tgz.
-
Notable Observations:
- Antisense Reads: Absent for miRNA, tRNA, and piRNA (common in small RNA-seq).
- Potential Issues: Some files (e.g., antisense counts) were missing but did not disrupt pipeline.
- Resource Usage: High RAM (200GB) and multi-threading (50 cores) employed for efficiency.
-
Output Files:
- Quantified counts for endogenous RNAs (miRNA, tRNA, etc.).
- Exogenous RNA alignments with taxonomic annotations.
- QC report, adapter sequences, and alignment statistics.
-
-
Downstream analyis using R for miRNAs
# see http://xgenes.com/article/article-content/288/draw-plots-for-mirnas-generated-by-compsra/ # see http://xgenes.com/article/article-content/289/draw-plots-for-pirna-generated-by-compsra/ # see http://xgenes.com/article/article-content/290/draw-plots-for-snrna-generated-by-compsra/ #Input file #exceRpt_miRNA_ReadCounts.txt #exceRpt_piRNA_ReadCounts.txt cd ~/DATA/Data_Ute/Data_Ute_smallRNA_7/summaries_exo7 mamba activate r_env R #> .libPaths() #[1] "/home/jhuang/mambaforge/envs/r_env/lib/R/library" #BiocManager::install("AnnotationDbi") #BiocManager::install("clusterProfiler") #BiocManager::install(c("ReactomePA","org.Hs.eg.db")) #BiocManager::install("limma") #BiocManager::install("sva") #install.packages("writexl") #install.packages("openxlsx") library("AnnotationDbi") library("clusterProfiler") library("ReactomePA") library("org.Hs.eg.db") library(DESeq2) library(gplots) library(limma) library(sva) #library(writexl) #d.raw_with_rownames <- cbind(RowNames = rownames(d.raw), d.raw); write_xlsx(d.raw, path = "d_raw.xlsx"); library(openxlsx) setwd("../summaries_exo7/") d.raw<- read.delim2("exceRpt_miRNA_ReadCounts.txt",sep="\t", header=TRUE, row.names=1) # Desired column order desired_order <- c( "parental_cells_1", "parental_cells_2", "parental_cells_3", "untreated_1", "untreated_2", "scr_control_1", "scr_control_2", "scr_control_3", "DMSO_control_1", "DMSO_control_2", "DMSO_control_3", "scr_DMSO_control_1", "scr_DMSO_control_2", "scr_DMSO_control_3", "sT_knockdown_1", "sT_knockdown_2", "sT_knockdown_3" ) # Reorder columns d.raw <- d.raw[, desired_order] setdiff(desired_order, colnames(d.raw)) # Shows missing or misnamed columns #sapply(d.raw, is.numeric) d.raw[] <- lapply(d.raw, as.numeric) #d.raw[] <- lapply(d.raw, function(x) as.numeric(as.character(x))) d.raw <- round(d.raw) write.csv(d.raw, file ="d_raw.csv") write.xlsx(d.raw, file = "d_raw.xlsx", rowNames = TRUE) # ------ Code sent to Ute ------ #d.raw <- read.delim2("d_raw.csv",sep=",", header=TRUE, row.names=1) parental_or_EV = as.factor(c("parental","parental","parental", "EV","EV","EV","EV","EV","EV","EV","EV","EV","EV","EV","EV","EV","EV")) #donor = as.factor(c("0505","1905", "0505","1905", "0505","1905", "0505","1905", "0505","1905", "0505","1905")) batch = as.factor(c("Aug22","March25","March25", "Sep23","Sep23", "Sep23","Sep23","March25", "Sep23","Sep23","March25", "Sep23","Sep23","March25", "Sep23","Sep23","March25")) replicates = as.factor(c("parental_cells","parental_cells","parental_cells", "untreated","untreated", "scr_control","scr_control","scr_control", "DMSO_control","DMSO_control","DMSO_control", "scr_DMSO_control", "scr_DMSO_control","scr_DMSO_control", "sT_knockdown", "sT_knockdown", "sT_knockdown")) ids = as.factor(c("parental_cells_1", "parental_cells_2", "parental_cells_3", "untreated_1", "untreated_2", "scr_control_1", "scr_control_2", "scr_control_3", "DMSO_control_1", "DMSO_control_2", "DMSO_control_3", "scr_DMSO_control_1", "scr_DMSO_control_2", "scr_DMSO_control_3", "sT_knockdown_1", "sT_knockdown_2", "sT_knockdown_3")) cData = data.frame(row.names=colnames(d.raw), replicates=replicates, ids=ids, batch=batch, parental_or_EV=parental_or_EV) dds<-DESeqDataSetFromMatrix(countData=d.raw, colData=cData, design=~replicates+batch) # Filter low-count miRNAs dds <- dds[ rowSums(counts(dds)) > 10, ] #1322-->903 rld <- rlogTransformation(dds) # -- before pca -- png("pca.png", 1200, 800) plotPCA(rld, intgroup=c("replicates")) #plotPCA(rld, intgroup = c("replicates", "batch")) #plotPCA(rld, intgroup = c("replicates", "ids")) #plotPCA(rld, "batch") dev.off() png("pca2.png", 1200, 800) #plotPCA(rld, intgroup=c("replicates")) #plotPCA(rld, intgroup = c("replicates", "batch")) #plotPCA(rld, intgroup = c("replicates", "ids")) plotPCA(rld, "batch") dev.off() # Batch Effect Removal Methods: #Applying batch effect correction techniques such as ComBat or SVA (Surrogate Variable Analysis). #- Using ComBat (from the sva package): # Assume `rld` is the rlog-transformed counts from DESeq2 rld_corrected <- ComBat(dat = assay(rld), batch = cData$batch, mod = model.matrix(~ replicates, data = cData)) # Visualize corrected PCA pca_corrected <- prcomp(t(rld_corrected)) png("pca_after_batch_correction.png", 1200, 800) plot(pca_corrected$x[, 1:2], col = cData$replicates) dev.off() #- Using SVA (Surrogate Variable Analysis): #If batch effects are strong and you want to remove hidden batch effects, SVA can help identify latent factors. After identifying these latent factors, you can add them to the DESeq2 design. # Assume that rld contains the rlog-transformed data mod <- model.matrix(~ replicates, data = cData) # This should include your main experimental variables sva_results <- sva(assay(rld), mod) #You would then adjust the design formula to include these latent variables. #- Using removeBatchEffect (CHOSEN!) #http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#how-do-i-use-vst-or-rlog-data-for-differential-testing mat <- assay(rld) mm <- model.matrix(~replicates, colData(rld)) mat <- limma::removeBatchEffect(mat, batch=rld$batch, design=mm) assay(rld) <- mat #- After batch effect removal, you should see a shift in the PCA plot — ideally, the samples should now cluster based on replicates or biological conditions rather than the batch. #If the batch effect has been successfully removed: # * Before correction: You will likely see samples grouped by batch. # * After correction: You should see the samples grouped by biological condition (e.g., parental, EV, scr_control, etc.). # -- after pca -- png("pca_after_batch_correction.png", 1200, 800) #plotPCA(rld, intgroup = c("replicates", "batch")) #plotPCA(rld, intgroup = c("replicates", "ids")) plotPCA(rld, intgroup=c("replicates")) dev.off() png("pca_after_batch_correction2.png", 1200, 800) plotPCA(rld, "batch") dev.off() # -- after heatmap -- ## generate the pairwise comparison between samples png("heatmap_after_batch_correction.png", 1200, 800) distsRL <- dist(t(assay(rld))) mat <- as.matrix(distsRL) rownames(mat) <- colnames(mat) <- with(colData(dds),paste(replicates,batch, sep=":")) #rownames(mat) <- colnames(mat) <- with(colData(dds),paste(replicates,ids, sep=":")) hc <- hclust(distsRL) hmcol <- colorRampPalette(brewer.pal(9,"GnBu"))(100) heatmap.2(mat, Rowv=as.dendrogram(hc),symm=TRUE, trace="none",col = rev(hmcol), margin=c(13, 13)) dev.off() #### STEP2: DEGs #### #- Heatmap untreated/wt vs parental; 1x for WaGa cell line #- Volcano plot untreated/wt vs parental; 1x for WaGa cell line #- Manhattan plot miRNAs; 1x for WaGa cell line #- Distribution of different small RNA species untreated/wt and parental; 1x for WaGa cell line #- Motif analysis: identify RNA-binding proteins that may regulate small RNA loading; 1x for WaGa cell line #convert bam to bigwig using deepTools by feeding inverse of DESeq’s size Factor sizeFactors(dds) #NULL dds <- estimateSizeFactors(dds) sizeFactors(dds) normalized_counts <- counts(dds, normalized=TRUE) write.table(normalized_counts, file="normalized_counts.txt", sep="\t", quote=F, col.names=NA) write.xlsx(normalized_counts, file = "normalized_counts.xlsx", rowNames = TRUE) #---- untreated, scr_control, DMSO_control, scr_DMSO_control, sT_knockdown to parental_cells ---- dds<-DESeqDataSetFromMatrix(countData=d.raw, colData=cData, design=~replicates+batch) dds$replicates <- relevel(dds$replicates, "parental_cells") dds = DESeq(dds, betaPrior=FALSE) #default betaPrior is FALSE resultsNames(dds) clist <- c("untreated_vs_parental_cells") dds$replicates <- relevel(dds$replicates, "untreated") dds = DESeq(dds, betaPrior=FALSE) resultsNames(dds) clist <- c("DMSO_control_vs_untreated", "scr_control_vs_untreated", "scr_DMSO_control_vs_untreated", "sT_knockdown_vs_untreated") dds$replicates <- relevel(dds$replicates, "DMSO_control") dds = DESeq(dds, betaPrior=FALSE) resultsNames(dds) clist <- c("sT_knockdown_vs_DMSO_control") dds$replicates <- relevel(dds$replicates, "scr_control") dds = DESeq(dds, betaPrior=FALSE) resultsNames(dds) clist <- c("sT_knockdown_vs_scr_control") dds$replicates <- relevel(dds$replicates, "scr_DMSO_control") dds = DESeq(dds, betaPrior=FALSE) resultsNames(dds) clist <- c("sT_knockdown_vs_scr_DMSO_control") #NOTE that the results sent to Ute is |padj|<=0.1. for (i in clist) { contrast = paste("replicates", i, sep="_") res = results(dds, name=contrast) res <- res[!is.na(res$log2FoldChange),] #https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#why-are-some-p-values-set-to-na res$padj <- ifelse(is.na(res$padj), 1, res$padj) res_df <- as.data.frame(res) write.csv(as.data.frame(res_df[order(res_df$pvalue),]), file = paste(i, "all.txt", sep="-")) up <- subset(res_df, padj<=0.05 & log2FoldChange>=2) down <- subset(res_df, padj<=0.05 & log2FoldChange<=-2) write.csv(as.data.frame(up[order(up$log2FoldChange,decreasing=TRUE),]), file = paste(i, "up.txt", sep="-")) write.csv(as.data.frame(down[order(abs(down$log2FoldChange),decreasing=TRUE),]), file = paste(i, "down.txt", sep="-")) } ~/Tools/csv2xls-0.4/csv_to_xls.py \ untreated_vs_parental_cells-all.txt \ untreated_vs_parental_cells-up.txt \ untreated_vs_parental_cells-down.txt \ -d$',' -o untreated_vs_parental_cells.xls; ~/Tools/csv2xls-0.4/csv_to_xls.py \ DMSO_control_vs_untreated-all.txt \ DMSO_control_vs_untreated-up.txt \ DMSO_control_vs_untreated-down.txt \ -d$',' -o DMSO_control_vs_untreated.xls; ~/Tools/csv2xls-0.4/csv_to_xls.py \ scr_control_vs_untreated-all.txt \ scr_control_vs_untreated-up.txt \ scr_control_vs_untreated-down.txt \ -d$',' -o scr_control_vs_untreated.xls; ~/Tools/csv2xls-0.4/csv_to_xls.py \ scr_DMSO_control_vs_untreated-all.txt \ scr_DMSO_control_vs_untreated-up.txt \ scr_DMSO_control_vs_untreated-down.txt \ -d$',' -o scr_DMSO_control_vs_untreated.xls; ~/Tools/csv2xls-0.4/csv_to_xls.py \ sT_knockdown_vs_untreated-all.txt \ sT_knockdown_vs_untreated-up.txt \ sT_knockdown_vs_untreated-down.txt \ -d$',' -o sT_knockdown_vs_untreated.xls; ~/Tools/csv2xls-0.4/csv_to_xls.py \ sT_knockdown_vs_DMSO_control-all.txt \ sT_knockdown_vs_DMSO_control-up.txt \ sT_knockdown_vs_DMSO_control-down.txt \ -d$',' -o sT_knockdown_vs_DMSO_control.xls; ~/Tools/csv2xls-0.4/csv_to_xls.py \ sT_knockdown_vs_scr_control-all.txt \ sT_knockdown_vs_scr_control-up.txt \ sT_knockdown_vs_scr_control-down.txt \ -d$',' -o sT_knockdown_vs_scr_control.xls; ~/Tools/csv2xls-0.4/csv_to_xls.py \ sT_knockdown_vs_scr_DMSO_control-all.txt \ sT_knockdown_vs_scr_DMSO_control-up.txt \ sT_knockdown_vs_scr_DMSO_control-down.txt \ -d$',' -o sT_knockdown_vs_scr_DMSO_control.xls; # ------------------- volcano_plot ------------------- library(ggplot2) library(ggrepel) geness_res <- read.csv(file = paste("untreated_vs_parental_cells", "all.txt", sep="-"), row.names=1) external_gene_name <- rownames(geness_res) geness_res <- cbind(geness_res, external_gene_name) #top_g are from ids top_g <- c("hsa-let-7b-5p","hsa-let-7g-5p","hsa-let-7i-5p","hsa-miR-103a-3p","hsa-miR-107","hsa-miR-1224-5p","hsa-miR-122-5p","hsa-miR-1226-5p","hsa-miR-1246","hsa-miR-127-3p","hsa-miR-1290","hsa-miR-130a-3p","hsa-miR-139-3p","hsa-miR-141-3p","hsa-miR-143-3p","hsa-miR-148b-3p","hsa-miR-155-5p","hsa-miR-15a-5p","hsa-miR-17-5p","hsa-miR-184","hsa-miR-18a-3p","hsa-miR-18a-5p","hsa-miR-190a-5p","hsa-miR-191-5p","hsa-miR-193b-5p","hsa-miR-197-5p","hsa-miR-200a-3p","hsa-miR-200b-5p","hsa-miR-206","hsa-miR-20a-5p","hsa-miR-210-3p","hsa-miR-2110","hsa-miR-21-5p","hsa-miR-218-5p","hsa-miR-219a-1-3p","hsa-miR-221-3p","hsa-miR-23b-3p","hsa-miR-27a-3p","hsa-miR-27b-3p","hsa-miR-27b-5p","hsa-miR-28-3p","hsa-miR-30a-5p","hsa-miR-30c-5p","hsa-miR-30e-5p","hsa-miR-3127-5p","hsa-miR-3131","hsa-miR-3180|hsa-miR-3180-3p","hsa-miR-320a","hsa-miR-320b","hsa-miR-320c","hsa-miR-320d","hsa-miR-330-3p","hsa-miR-335-3p","hsa-miR-33b-5p","hsa-miR-340-5p","hsa-miR-342-5p","hsa-miR-3605-5p","hsa-miR-361-3p","hsa-miR-365a-5p","hsa-miR-374b-5p","hsa-miR-378i","hsa-miR-379-5p","hsa-miR-3940-5p","hsa-miR-409-3p","hsa-miR-411-5p","hsa-miR-423-3p","hsa-miR-423-5p","hsa-miR-4286","hsa-miR-429","hsa-miR-432-5p","hsa-miR-4326","hsa-miR-451a","hsa-miR-4520-3p","hsa-miR-454-3p","hsa-miR-4646-5p","hsa-miR-4667-5p","hsa-miR-4748","hsa-miR-483-5p","hsa-miR-486-5p","hsa-miR-5010-5p","hsa-miR-504-3p","hsa-miR-5187-5p","hsa-miR-590-3p","hsa-miR-6128","hsa-miR-625-5p","hsa-miR-6726-5p","hsa-miR-6730-5p","hsa-miR-676-3p","hsa-miR-6767-5p","hsa-miR-6777-5p","hsa-miR-6780a-5p","hsa-miR-6794-5p","hsa-miR-6817-3p","hsa-miR-708-5p","hsa-miR-7-5p","hsa-miR-766-5p","hsa-miR-7854-3p","hsa-miR-873-3p","hsa-miR-885-3p","hsa-miR-92b-5p","hsa-miR-93-5p","hsa-miR-937-3p","hsa-miR-9-5p","hsa-miR-98-5p") subset(geness_res, external_gene_name %in% top_g & pvalue < 0.05 & (abs(geness_res$log2FoldChange) >= 2.0)) geness_res$Color <- "NS or log2FC < 2.0" geness_res$Color[geness_res$pvalue < 0.05] <- "P < 0.05" geness_res$Color[geness_res$padj < 0.05] <- "P-adj < 0.05" geness_res$Color[abs(geness_res$log2FoldChange) < 2.0] <- "NS or log2FC < 2.0" write.csv(geness_res, "untreated_vs_parental_cells_with_Category.csv") geness_res$invert_P <- (-log10(geness_res$pvalue)) * sign(geness_res$log2FoldChange) geness_res <- geness_res[, -1*ncol(geness_res)] png("volcano_plot_untreated_vs_parental_cells.png",width=1200, height=1400) #svg("untreated_vs_parental_cells.svg",width=12, height=14) ggplot(geness_res, aes(x = log2FoldChange, y = -log10(pvalue), color = Color, label = external_gene_name)) + geom_vline(xintercept = c(2.0, -2.0), lty = "dashed") + geom_hline(yintercept = -log10(0.05), lty = "dashed") + geom_point() + labs(x = "log2(FC)", y = "Significance, -log10(P)", color = "Significance") + scale_color_manual(values = c("P < 0.05"="orange","P-adj < 0.05"="red","NS or log2FC < 2.0"="darkgray"),guide = guide_legend(override.aes = list(size = 4))) + scale_y_continuous(expand = expansion(mult = c(0,0.05))) + geom_text_repel(data = subset(geness_res, external_gene_name %in% top_g & pvalue < 0.05 & (abs(geness_res$log2FoldChange) >= 2.0)), size = 4, point.padding = 0.15, color = "black", min.segment.length = .1, box.padding = .2, lwd = 2) + theme_bw(base_size = 16) + theme(legend.position = "bottom") dev.off() # ------------------ differentially_expressed_miRNAs_heatmap ----------------- # prepare all_genes rld <- rlogTransformation(dds) mat <- assay(rld) mm <- model.matrix(~replicates, colData(rld)) mat <- limma::removeBatchEffect(mat, batch=rld$batch, design=mm) assay(rld) <- mat RNASeq.NoCellLine <- assay(rld) # reorder the columns #colnames(RNASeq.NoCellLine) = c("0505 WaGa sT DMSO","1905 WaGa sT DMSO","0505 WaGa sT Dox","1905 WaGa sT Dox","0505 WaGa scr DMSO","1905 WaGa scr DMSO","0505 WaGa scr Dox","1905 WaGa scr Dox","0505 WaGa wt","1905 WaGa wt","control MKL1","control WaGa") #col.order <-c("control MKL1", "control WaGa","0505 WaGa wt","1905 WaGa wt","0505 WaGa sT DMSO","1905 WaGa sT DMSO","0505 WaGa sT Dox","1905 WaGa sT Dox","0505 WaGa scr DMSO","1905 WaGa scr DMSO","0505 WaGa scr Dox","1905 WaGa scr Dox") #RNASeq.NoCellLine <- RNASeq.NoCellLine[,col.order] #Option4: manully defining #for i in untreated_vs_parental_cells sT_knockdown_vs_untreated DMSO_control_vs_untreated scr_control_vs_untreated scr_DMSO_control_vs_untreated sT_knockdown_vs_DMSO_control sT_knockdown_vs_scr_control sT_knockdown_vs_scr_DMSO_control; do # echo "cut -d',' -f1-1 ${i}-up.txt > ${i}-up.id"; # echo "cut -d',' -f1-1 ${i}-down.txt > ${i}-down.id"; #done #cat *.id | sort -u > ids ##add Gene_Id in the first line, delete the "" GOI <- read.csv("ids")$Gene_Id datamat = RNASeq.NoCellLine[GOI, ] # clustering the genes and draw heatmap #datamat <- datamat[,-1] #delete the sample "control MKL1" #datamat <- datamat[, 1:5] #parental_cells_1 parental_cells_2 parental_cells_3 untreated_1 untreated_2 scr_control_1 scr_control_2 scr_control_3 DMSO_control_1 DMSO_control_2 DMSO_control_3 scr_DMSO_control_1 scr_DMSO_control_2 scr_DMSO_control_3 sT_knockdown_1 sT_knockdown_2 sT_knockdown_3 --> #parental cells 1 parental cells 2 parental cells 3 untreated 1 untreated 2 scr control 1 scr control 2 scr control 3 DMSO control 1 DMSO control 2 DMSO control 3 scr DMSO control 1 scr DMSO control 2 scr DMSO control 3 sT knockdown 1 sT knockdown 2 sT knockdown 3 colnames(datamat)[1] <- "parental cells 1" colnames(datamat)[2] <- "parental cells 2" colnames(datamat)[3] <- "parental cells 3" colnames(datamat)[4] <- "untreated 1" colnames(datamat)[5] <- "untreated 2" colnames(datamat)[6] <- "scr control 1" colnames(datamat)[7] <- "scr control 2" colnames(datamat)[8] <- "scr control 3" colnames(datamat)[9] <- "DMSO control 1" colnames(datamat)[10] <- "DMSO control 2" colnames(datamat)[11] <- "DMSO control 3" colnames(datamat)[12] <- "scr DMSO control 1" colnames(datamat)[13] <- "scr DMSO control 2" colnames(datamat)[14] <- "scr DMSO control 3" colnames(datamat)[15] <- "sT knockdown 1" colnames(datamat)[16] <- "sT knockdown 2" colnames(datamat)[17] <- "sT knockdown 3" write.csv(datamat, file ="gene_expression_keeping_replicates.txt") write.xlsx(datamat, file = "gene_expression_keeping_replicates.xlsx", rowNames = TRUE) #"ward.D"’, ‘"ward.D2"’,‘"single"’, ‘"complete"’, ‘"average"’ (= UPGMA), ‘"mcquitty"’(= WPGMA), ‘"median"’ (= WPGMC) or ‘"centroid"’ (= UPGMC) hr <- hclust(as.dist(1-cor(t(datamat), method="pearson")), method="complete") hc <- hclust(as.dist(1-cor(datamat, method="spearman")), method="complete") mycl = cutree(hr, h=max(hr$height)/1.1) mycol = c("YELLOW", "BLUE", "ORANGE", "CYAN", "GREEN", "MAGENTA", "GREY", "LIGHTCYAN", "RED", "PINK", "DARKORANGE", "MAROON", "LIGHTGREEN", "DARKBLUE", "DARKRED", "LIGHTBLUE", "DARKCYAN", "DARKGREEN", "DARKMAGENTA"); mycol = mycol[as.vector(mycl)] rownames(datamat) <- sub("\\|.*", "", rownames(datamat)) png("DEGs_heatmap_keeping_replicates.png", width=1000, height=1400) #svg("DEGs_heatmap_keeping_replicates.svg", width=6, height=8) heatmap.2(as.matrix(datamat), Rowv=as.dendrogram(hr), Colv=NA, dendrogram='row', labRow=row.names(datamat), scale='row', trace='none', col=bluered(75), RowSideColors=mycol, srtCol=30, lhei=c(1,8), cexRow=1.4, # Increase row label font size cexCol=1.7, # Increase column label font size margin=c(8, 12) ) dev.off() # ----------- manhattan_plot ------------- # TODO_TOMORROW: the top miRNA should different, since we want to see the differentially expressed miRNA, therefore we should show the top DEG miRNA, find the top-5 and mark the 5 as the red points and give the label! # TODO_piRNA # TODO: Both motiv calling! # TODO: send the results to Ute! # Load the required libraries library(ggplot2) library(dplyr) library(tidyr) library(ggrepel) # For better label positioning # Step 1: Compute RPM from raw counts (d.raw has miRNAs in rows, samples in columns) d.raw_5 <- d.raw[, 1:5] # assuming 5 samples total_counts <- colSums(d.raw_5) RPM <- sweep(d.raw_5, 2, total_counts, FUN = "/") * 1e6 # Step 2: Prepare long-format dataframe RPM$miRNA <- rownames(RPM) df <- pivot_longer(RPM, cols = -miRNA, names_to = "sample", values_to = "RPM") # Step 3: Log-transform RPM df <- df %>% mutate(logRPM = log10(RPM + 1)) # Step 4: Add miRNA index for x-axis positioning df <- df %>% arrange(miRNA) %>% group_by(sample) %>% mutate(Position = row_number()) # Step 5: Identify top miRNAs based on mean RPM top_mirnas <- df %>% group_by(miRNA) %>% summarise(mean_RPM = mean(RPM)) %>% arrange(desc(mean_RPM)) %>% head(5) %>% pull(miRNA) # Get the names of top 5 miRNAs # Step 6: Assign color based on whether the miRNA is top or not df$color <- ifelse(df$miRNA %in% top_mirnas, "red", "darkblue") # Rename the sample labels for display sample_labels <- c( "parental_cells_1" = "Parental cell 1", "parental_cells_2" = "Parental cell 2", "parental_cells_3" = "Parental cell 3", "untreated_1" = "Untreated 1", "untreated_2" = "Untreated 2" ) # Step 7: Plot png("manhattan_plot_top_miRNAs_based_on_mean_RPM.png", width = 1200, height = 1200) ggplot(df, aes(x = Position, y = logRPM, color = color)) + scale_color_manual(values = c("red" = "red", "darkblue" = "darkblue")) + geom_jitter(width = 0.4) + geom_text_repel( data = df %>% filter(miRNA %in% top_mirnas), aes(label = miRNA), box.padding = 0.5, point.padding = 0.5, segment.color = 'gray50', size = 5, max.overlaps = 8, color = "black" ) + labs(x = "", y = "log10(Read Per Million) (RPM)") + facet_wrap(~sample, scales = "free_x", ncol = 5, labeller = labeller(sample = sample_labels)) + theme_minimal() + theme( axis.text.x = element_blank(), axis.ticks.x = element_blank(), legend.position = "none", text = element_text(size = 16), axis.title = element_text(size = 18), strip.text = element_text(size = 16, face = "bold"), panel.spacing = unit(1.5, "lines") # <-- More space between plots ) dev.off() top_mirnas = c("hsa-miR-20a-5p","hsa-miR-93-5p","hsa-let-7g-5p","hsa-miR-30a-5p","hsa-miR-423-5p","hsa-let-7i-5p") #,"hsa-miR-17-5p","hsa-miR-107","hsa-miR-483-5p","hsa-miR-9-5p","hsa-miR-103a-3p","hsa-miR-30e-5p","hsa-miR-21-5p","hsa-miR-30d-5p") # Step 6: Assign color based on whether the miRNA is top or not df$color <- ifelse(df$miRNA %in% top_mirnas, "red", "darkblue") # Rename the sample labels for display sample_labels <- c( "parental_cells_1" = "Parental cell 1", "parental_cells_2" = "Parental cell 2", "parental_cells_3" = "Parental cell 3", "untreated_1" = "Untreated 1", "untreated_2" = "Untreated 2" ) # Step 7: Plot png("manhattan_plot_most_differentially_expressed_miRNAs.png", width = 1200, height = 1200) ggplot(df, aes(x = Position, y = logRPM, color = color)) + scale_color_manual(values = c("red" = "red", "darkblue" = "darkblue")) + geom_jitter(width = 0.4) + geom_text_repel( data = df %>% filter(miRNA %in% top_mirnas), aes(label = miRNA), box.padding = 0.5, point.padding = 0.5, segment.color = 'gray50', size = 5, max.overlaps = 8, color = "black" ) + labs(x = "", y = "log10(Read Per Million) (RPM)") + facet_wrap(~sample, scales = "free_x", ncol = 5, labeller = labeller(sample = sample_labels)) + theme_minimal() + theme( axis.text.x = element_blank(), axis.ticks.x = element_blank(), legend.position = "none", text = element_text(size = 16), axis.title = element_text(size = 18), strip.text = element_text(size = 16, face = "bold"), panel.spacing = unit(1.5, "lines") # <-- More space between plots ) dev.off() mkdir miRNAs mv *.png miRNAs mv *.svg miRNAs mv *.csv miRNAs mv *.xls* miRNAs mv *.id miRNAs mv ids miRNAs mv normalized_counts.txt miRNAs mv *-all.txt miRNAs mv *-up.txt miRNAs mv *-down.txt miRNAs mv gene_expression_keeping_replicates.txt miRNAs cd miRNAs mv DEGs_heatmap_keeping_replicates.png differentially_expressed_miRNAs_heatmap.png mv volcano_plot_untreated_vs_parental_cells.png volcano_plot_miRNAs_untreated_vs_parental_cells.png mv untreated_vs_parental_cells.xls miRNA_untreated_vs_parental_cells.xls
-
Do separate shRNA and treatment analysis
# cut [1-5], the remaining are d.raw_12 <- d.raw[, 6:17] #> colnames(d.raw_12) #[1] "scr_control_1" "scr_control_2" "scr_control_3" #[4] "DMSO_control_1" "DMSO_control_2" "DMSO_control_3" #[7] "scr_DMSO_control_1" "scr_DMSO_control_2" "scr_DMSO_control_3" #[10] "sT_knockdown_1" "sT_knockdown_2" "sT_knockdown_3" # "scr Dox" → "scr control" # "sT DMSO" → "DMSO control" # "scr DMSO" → "scr DMSO control" # "sT Dox" → "sT knockdown" shRNA = as.factor(c("scr","scr","scr","sT","sT","sT","scr","scr","scr","sT","sT","sT")) treatment = as.factor(c("Dox","Dox","Dox","DMSO","DMSO","DMSO","DMSO","DMSO","DMSO","Dox","Dox","Dox")) cData = data.frame(row.names=colnames(d.raw_12), shRNA=shRNA, treatment=treatment) dds_shRNA_treatment<-DESeqDataSetFromMatrix(countData=d.raw_12, colData=cData, design=~shRNA+treatment+shRNA:treatment) dds_shRNA_treatment = DESeq(dds_shRNA_treatment, betaPrior=FALSE) resultsNames(dds_shRNA_treatment) contrasts <- c("shRNA_sT_vs_scr", "treatment_Dox_vs_DMSO", "shRNAsT.treatmentDox") for (contrast in contrasts) { res = results(dds_shRNA_treatment, name=contrast) res <- res[!is.na(res$log2FoldChange),] #https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#why-are-some-p-values-set-to-na res$padj <- ifelse(is.na(res$padj), 1, res$padj) res_df <- as.data.frame(res) write.csv(as.data.frame(res_df[order(res_df$pvalue),]), file = paste(contrast, "all.txt", sep="-")) up <- subset(res_df, padj<=0.05 & log2FoldChange>=2) down <- subset(res_df, padj<=0.05 & log2FoldChange<=-2) write.csv(as.data.frame(up[order(up$log2FoldChange,decreasing=TRUE),]), file = paste(contrast, "up.txt", sep="-")) write.csv(as.data.frame(down[order(abs(down$log2FoldChange),decreasing=TRUE),]), file = paste(contrast, "down.txt", sep="-")) } #~/Tools/csv2xls-0.4/csv_to_xls.py shRNA_sT_vs_scr-up.txt shRNA_sT_vs_scr-down.txt shRNA_sT_vs_scr-all.txt -d$',' -o shRNA_sT_vs_scr.xls #~/Tools/csv2xls-0.4/csv_to_xls.py treatment_Dox_vs_DMSO-up.txt treatment_Dox_vs_DMSO-down.txt treatment_Dox_vs_DMSO-all.txt -d$',' -o treatment_Dox_vs_DMSO.xls #~/Tools/csv2xls-0.4/csv_to_xls.py shRNAsT.treatmentDox-up.txt shRNAsT.treatmentDox-down.txt shRNAsT.treatmentDox-all.txt -d$',' -o shRNAsT.treatmentDox.xls
-
Downstream analyis using R for piRNAs
d.raw<- read.delim2("exceRpt_piRNA_ReadCounts.txt",sep="\t", header=TRUE, row.names=1) # Desired column order desired_order <- c( "parental_cells_1", "parental_cells_2", "parental_cells_3", "untreated_1", "untreated_2", "scr_control_1", "scr_control_2", "scr_control_3", "DMSO_control_1", "DMSO_control_2", "DMSO_control_3", "scr_DMSO_control_1", "scr_DMSO_control_2", "scr_DMSO_control_3", "sT_knockdown_1", "sT_knockdown_2", "sT_knockdown_3" ) # Reorder columns d.raw <- d.raw[, desired_order] setdiff(desired_order, colnames(d.raw)) # Shows missing or misnamed columns #sapply(d.raw, is.numeric) d.raw[] <- lapply(d.raw, as.numeric) #d.raw[] <- lapply(d.raw, function(x) as.numeric(as.character(x))) d.raw <- round(d.raw) write.csv(d.raw, file ="d_raw.csv") write.xlsx(d.raw, file = "d_raw.xlsx", rowNames = TRUE) #Make the piRNA names shorter, e.g. "hsa_piR_016658|gb|DQ592931|Homo_sapiens:6:80508363:80508389:Plus" --> "hsa_piR_016658" #paste -d',' f1_1 f2_ > d_raw_.csv d.raw <- read.delim2("d_raw_.csv",sep=",", header=TRUE, row.names=1) parental_or_EV = as.factor(c("parental","parental","parental", "EV","EV","EV","EV","EV","EV","EV","EV","EV","EV","EV","EV","EV","EV")) #donor = as.factor(c("0505","1905", "0505","1905", "0505","1905", "0505","1905", "0505","1905", "0505","1905")) batch = as.factor(c("Aug22","March25","March25", "Sep23","Sep23", "Sep23","Sep23","March25", "Sep23","Sep23","March25", "Sep23","Sep23","March25", "Sep23","Sep23","March25")) replicates = as.factor(c("parental_cells","parental_cells","parental_cells", "untreated","untreated", "scr_control","scr_control","scr_control", "DMSO_control","DMSO_control","DMSO_control", "scr_DMSO_control", "scr_DMSO_control","scr_DMSO_control", "sT_knockdown", "sT_knockdown", "sT_knockdown")) ids = as.factor(c("parental_cells_1", "parental_cells_2", "parental_cells_3", "untreated_1", "untreated_2", "scr_control_1", "scr_control_2", "scr_control_3", "DMSO_control_1", "DMSO_control_2", "DMSO_control_3", "scr_DMSO_control_1", "scr_DMSO_control_2", "scr_DMSO_control_3", "sT_knockdown_1", "sT_knockdown_2", "sT_knockdown_3")) cData = data.frame(row.names=colnames(d.raw), replicates=replicates, ids=ids, batch=batch, parental_or_EV=parental_or_EV) dds<-DESeqDataSetFromMatrix(countData=d.raw, colData=cData, design=~replicates+batch) # Filter low-count miRNAs dds <- dds[ rowSums(counts(dds)) > 10, ] #364-->124 rld <- rlogTransformation(dds) # -- before pca -- png("pca.png", 1200, 800) plotPCA(rld, intgroup=c("replicates")) #plotPCA(rld, intgroup = c("replicates", "batch")) #plotPCA(rld, intgroup = c("replicates", "ids")) #plotPCA(rld, "batch") dev.off() png("pca2.png", 1200, 800) #plotPCA(rld, intgroup=c("replicates")) #plotPCA(rld, intgroup = c("replicates", "batch")) #plotPCA(rld, intgroup = c("replicates", "ids")) plotPCA(rld, "batch") dev.off() # Batch Effect Removal Methods: #Applying batch effect correction techniques such as ComBat, SVA (Surrogate Variable Analysis) or limma::removeBatchEffect. #http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#how-do-i-use-vst-or-rlog-data-for-differential-testing mat <- assay(rld) mm <- model.matrix(~replicates, colData(rld)) mat <- limma::removeBatchEffect(mat, batch=rld$batch, design=mm) assay(rld) <- mat #- After batch effect removal, you should see a shift in the PCA plot — ideally, the samples should now cluster based on replicates or biological conditions rather than the batch. #If the batch effect has been successfully removed: # * Before correction: You will likely see samples grouped by batch. # * After correction: You should see the samples grouped by biological condition (e.g., parental, EV, scr_control, etc.). # -- after pca -- png("pca_after_batch_correction.png", 1200, 800) #plotPCA(rld, intgroup = c("replicates", "batch")) #plotPCA(rld, intgroup = c("replicates", "ids")) plotPCA(rld, intgroup=c("replicates")) dev.off() png("pca_after_batch_correction2.png", 1200, 800) plotPCA(rld, "batch") dev.off() # -- after heatmap -- ## generate the pairwise comparison between samples png("heatmap_after_batch_correction.png", 1200, 800) distsRL <- dist(t(assay(rld))) mat <- as.matrix(distsRL) rownames(mat) <- colnames(mat) <- with(colData(dds),paste(replicates,batch, sep=":")) #rownames(mat) <- colnames(mat) <- with(colData(dds),paste(replicates,ids, sep=":")) hc <- hclust(distsRL) hmcol <- colorRampPalette(brewer.pal(9,"GnBu"))(100) heatmap.2(mat, Rowv=as.dendrogram(hc),symm=TRUE, trace="none",col = rev(hmcol), margin=c(13, 13)) dev.off() #### STEP2: DEGs #### #- Heatmap untreated/wt vs parental; 1x for WaGa cell line #- Volcano plot untreated/wt vs parental; 1x for WaGa cell line #- Manhattan plot miRNAs; 1x for WaGa cell line #- Distribution of different small RNA species untreated/wt and parental; 1x for WaGa cell line #- Motif analysis: identify RNA-binding proteins that may regulate small RNA loading; 1x for WaGa cell line #convert bam to bigwig using deepTools by feeding inverse of DESeq’s size Factor sizeFactors(dds) #NULL dds <- estimateSizeFactors(dds) sizeFactors(dds) normalized_counts <- counts(dds, normalized=TRUE) write.table(normalized_counts, file="normalized_counts.txt", sep="\t", quote=F, col.names=NA) write.xlsx(normalized_counts, file = "normalized_counts.xlsx", rowNames = TRUE) #---- untreated, scr_control, DMSO_control, scr_DMSO_control, sT_knockdown to parental_cells ---- dds<-DESeqDataSetFromMatrix(countData=d.raw, colData=cData, design=~replicates+batch) dds$replicates <- relevel(dds$replicates, "parental_cells") dds = DESeq(dds, betaPrior=FALSE) #default betaPrior is FALSE resultsNames(dds) clist <- c("untreated_vs_parental_cells") #NOTE that the results sent to Ute is |padj|<=0.1. for (i in clist) { contrast = paste("replicates", i, sep="_") res = results(dds, name=contrast) res <- res[!is.na(res$log2FoldChange),] #https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#why-are-some-p-values-set-to-na res$padj <- ifelse(is.na(res$padj), 1, res$padj) res_df <- as.data.frame(res) write.csv(as.data.frame(res_df[order(res_df$pvalue),]), file = paste(i, "all.txt", sep="-")) up <- subset(res_df, padj<=0.05 & log2FoldChange>=2) down <- subset(res_df, padj<=0.05 & log2FoldChange<=-2) write.csv(as.data.frame(up[order(up$log2FoldChange,decreasing=TRUE),]), file = paste(i, "up.txt", sep="-")) write.csv(as.data.frame(down[order(abs(down$log2FoldChange),decreasing=TRUE),]), file = paste(i, "down.txt", sep="-")) } ~/Tools/csv2xls-0.4/csv_to_xls.py \ untreated_vs_parental_cells-all.txt \ untreated_vs_parental_cells-up.txt \ untreated_vs_parental_cells-down.txt \ -d$',' -o untreated_vs_parental_cells.xls; # ------------------- volcano_plot ------------------- library(ggplot2) library(ggrepel) geness_res <- read.csv(file = paste("untreated_vs_parental_cells", "all.txt", sep="-"), row.names=1) external_gene_name <- rownames(geness_res) geness_res <- cbind(geness_res, external_gene_name) #top_g are from ids top_g <- c("hsa_piR_000805","hsa_piR_001152","hsa_piR_001170","hsa_piR_001205","hsa_piR_009051","hsa_piR_010894","hsa_piR_012681","hsa_piR_012753","hsa_piR_016659","hsa_piR_017033","hsa_piR_017178","hsa_piR_018292","hsa_piR_018780","hsa_piR_019420","hsa_piR_020009","hsa_piR_020326","hsa_piR_020813","hsa_piR_020814","hsa_piR_020828") subset(geness_res, external_gene_name %in% top_g & pvalue < 0.05 & (abs(geness_res$log2FoldChange) >= 2.0)) geness_res$Color <- "NS or log2FC < 2.0" geness_res$Color[geness_res$pvalue < 0.05] <- "P < 0.05" geness_res$Color[geness_res$padj < 0.05] <- "P-adj < 0.05" geness_res$Color[abs(geness_res$log2FoldChange) < 2.0] <- "NS or log2FC < 2.0" write.csv(geness_res, "untreated_vs_parental_cells_with_Category.csv") geness_res$invert_P <- (-log10(geness_res$pvalue)) * sign(geness_res$log2FoldChange) geness_res <- geness_res[, -1*ncol(geness_res)] png("volcano_plot_piRNAs_untreated_vs_parental_cells.png",width=1200, height=1400) #svg("untreated_vs_parental_cells.svg",width=12, height=14) ggplot(geness_res, aes(x = log2FoldChange, y = -log10(pvalue), color = Color, label = external_gene_name)) + geom_vline(xintercept = c(2.0, -2.0), lty = "dashed") + geom_hline(yintercept = -log10(0.05), lty = "dashed") + geom_point() + labs(x = "log2(FC)", y = "Significance, -log10(P)", color = "Significance") + scale_color_manual(values = c("P < 0.05"="orange","P-adj < 0.05"="red","NS or log2FC < 2.0"="darkgray"),guide = guide_legend(override.aes = list(size = 4))) + scale_y_continuous(expand = expansion(mult = c(0,0.05))) + geom_text_repel(data = subset(geness_res, external_gene_name %in% top_g & pvalue < 0.05 & (abs(geness_res$log2FoldChange) >= 2.0)), size = 4, point.padding = 0.15, color = "black", min.segment.length = .1, box.padding = .2, lwd = 2) + theme_bw(base_size = 16) + theme(legend.position = "bottom") dev.off() # ------------------ differentially_expressed_piRNAs_heatmap ----------------- # prepare all_genes rld <- rlogTransformation(dds) mat <- assay(rld) mm <- model.matrix(~replicates, colData(rld)) mat <- limma::removeBatchEffect(mat, batch=rld$batch, design=mm) assay(rld) <- mat RNASeq.NoCellLine <- assay(rld) #Option4: manully defining #for i in untreated_vs_parental_cells; do # echo "cut -d',' -f1-1 ${i}-up.txt > ${i}-up.id"; # echo "cut -d',' -f1-1 ${i}-down.txt > ${i}-down.id"; #done #cat *.id | sort -u > ids ##add Gene_Id in the first line, delete the "" GOI <- read.csv("ids")$Gene_Id datamat = RNASeq.NoCellLine[GOI, ] # clustering the genes and draw heatmap #datamat <- datamat[,-1] #delete the sample "control MKL1" datamat <- datamat[, 1:5] colnames(datamat)[1] <- "parental cells 1" colnames(datamat)[2] <- "parental cells 2" colnames(datamat)[3] <- "parental cells 3" colnames(datamat)[4] <- "untreated 1" colnames(datamat)[5] <- "untreated 2" write.csv(datamat, file ="gene_expression_keeping_replicates.txt") write.xlsx(datamat, file = "gene_expression_keeping_replicates.xlsx", rowNames = TRUE) #"ward.D"’, ‘"ward.D2"’,‘"single"’, ‘"complete"’, ‘"average"’ (= UPGMA), ‘"mcquitty"’(= WPGMA), ‘"median"’ (= WPGMC) or ‘"centroid"’ (= UPGMC) hr <- hclust(as.dist(1-cor(t(datamat), method="pearson")), method="complete") hc <- hclust(as.dist(1-cor(datamat, method="spearman")), method="complete") mycl = cutree(hr, h=max(hr$height)/1.1) mycol = c("YELLOW", "BLUE", "ORANGE", "CYAN", "GREEN", "MAGENTA", "GREY", "LIGHTCYAN", "RED", "PINK", "DARKORANGE", "MAROON", "LIGHTGREEN", "DARKBLUE", "DARKRED", "LIGHTBLUE", "DARKCYAN", "DARKGREEN", "DARKMAGENTA"); mycol = mycol[as.vector(mycl)] rownames(datamat) <- sub("\\|.*", "", rownames(datamat)) png("differentially_expressed_piRNAs_heatmap.png", width=800, height=800) #svg("differentially_expressed_piRNAs_heatmap.svg", width=6, height=8) heatmap.2(as.matrix(datamat), Rowv=as.dendrogram(hr), Colv=NA, dendrogram='row', labRow=row.names(datamat), scale='row', trace='none', col=bluered(75), RowSideColors=mycol, srtCol=20, lhei=c(1,4), cexRow=1.7, # Increase row label font size cexCol=1.7, # Increase column label font size margin=c(6, 12) ) dev.off() # ----------- manhattan_plot ------------- # Load the required libraries library(ggplot2) library(dplyr) library(tidyr) library(ggrepel) # For better label positioning # Step 1: Compute RPM from raw counts (d.raw has piRNAs in rows, samples in columns) d.raw_5 <- d.raw[, 1:5] # assuming 5 samples total_counts <- colSums(d.raw_5) RPM <- sweep(d.raw_5, 2, total_counts, FUN = "/") * 1e6 # Step 2: Prepare long-format dataframe RPM$piRNA <- rownames(RPM) df <- pivot_longer(RPM, cols = -piRNA, names_to = "sample", values_to = "RPM") # Step 3: Log-transform RPM df <- df %>% mutate(logRPM = log10(RPM + 1)) # Step 4: Add piRNA index for x-axis positioning df <- df %>% arrange(piRNA) %>% group_by(sample) %>% mutate(Position = row_number()) # Step 5: Identify top piRNAs based on mean RPM top_pirnas <- df %>% group_by(piRNA) %>% summarise(mean_RPM = mean(RPM)) %>% arrange(desc(mean_RPM)) %>% head(5) %>% pull(piRNA) # Get the names of top 5 piRNAs # Step 6: Assign color based on whether the piRNA is top or not df$color <- ifelse(df$piRNA %in% top_pirnas, "red", "darkblue") # Rename the sample labels for display sample_labels <- c( "parental_cells_1" = "Parental cell 1", "parental_cells_2" = "Parental cell 2", "parental_cells_3" = "Parental cell 3", "untreated_1" = "Untreated 1", "untreated_2" = "Untreated 2" ) # Step 7: Plot png("manhattan_plot_top_piRNAs_based_on_mean_RPM.png", width = 1200, height = 1200) ggplot(df, aes(x = Position, y = logRPM, color = color)) + scale_color_manual(values = c("red" = "red", "darkblue" = "darkblue")) + geom_jitter(width = 0.4) + geom_text_repel( data = df %>% filter(piRNA %in% top_pirnas), aes(label = piRNA), box.padding = 0.5, point.padding = 0.5, segment.color = 'gray50', size = 5, max.overlaps = 8, color = "black" ) + labs(x = "", y = "log10(Read Per Million) (RPM)") + facet_wrap(~sample, scales = "free_x", ncol = 5, labeller = labeller(sample = sample_labels)) + theme_minimal() + theme( axis.text.x = element_blank(), axis.ticks.x = element_blank(), legend.position = "none", text = element_text(size = 16), axis.title = element_text(size = 18), strip.text = element_text(size = 16, face = "bold"), panel.spacing = unit(1.5, "lines") # <-- More space between plots ) dev.off() top_pirnas = c("hsa_piR_012681","hsa_piR_012753","hsa_piR_001152","hsa_piR_020813","hsa_piR_020828") # Step 6: Assign color based on whether the piRNA is top or not df$color <- ifelse(df$piRNA %in% top_pirnas, "red", "darkblue") # Rename the sample labels for display sample_labels <- c( "parental_cells_1" = "Parental cell 1", "parental_cells_2" = "Parental cell 2", "parental_cells_3" = "Parental cell 3", "untreated_1" = "Untreated 1", "untreated_2" = "Untreated 2" ) # Step 7: Plot png("manhattan_plot_most_differentially_expressed_piRNAs.png", width = 1200, height = 1200) ggplot(df, aes(x = Position, y = logRPM, color = color)) + scale_color_manual(values = c("red" = "red", "darkblue" = "darkblue")) + geom_jitter(width = 0.4) + geom_text_repel( data = df %>% filter(piRNA %in% top_pirnas), aes(label = piRNA), box.padding = 0.5, point.padding = 0.5, segment.color = 'gray50', size = 5, max.overlaps = 8, color = "black" ) + labs(x = "", y = "log10(Read Per Million) (RPM)") + facet_wrap(~sample, scales = "free_x", ncol = 5, labeller = labeller(sample = sample_labels)) + theme_minimal() + theme( axis.text.x = element_blank(), axis.ticks.x = element_blank(), legend.position = "none", text = element_text(size = 16), axis.title = element_text(size = 18), strip.text = element_text(size = 16, face = "bold"), panel.spacing = unit(1.5, "lines") # <-- More space between plots ) dev.off() mkdir piRNAs mv *.png piRNAs mv *.csv piRNAs mv *.xls* piRNAs mv *.id piRNAs mv ids piRNAs mv normalized_counts.txt piRNAs mv *-all.txt piRNAs mv *-up.txt piRNAs mv *-down.txt piRNAs mv gene_expression_keeping_replicates.txt piRNAs cd piRNAs mv untreated_vs_parental_cells.xls piRNA_untreated_vs_parental_cells.xls
-
Reporting
Please find attached the analysis results for small RNAs in the WaGa cell line. miRNAs:
* Heatmap comparing untreated/wt vs. parental (1x): See differentially_expressed_miRNAs_heatmap.png * Volcano plot comparing untreated/wt vs. parental (1x): See volcano_plot_miRNAs_untreated_vs_parental_cells.png * Manhattan plots highlighting top differentially expressed miRNAs (1x): See manhattan_plot_most_differentially_expressed_miRNAs.png and manhattan_plot_top_miRNAs_based_on_mean_RPM.png
piRNAs:
* Heatmap comparing untreated/wt vs. parental (1x): See differentially_expressed_piRNAs_heatmap.png * Volcano plot comparing untreated/wt vs. parental (1x): See volcano_plot_piRNAs_untreated_vs_parental_cells.png * Manhattan plots highlighting top differentially expressed piRNAs (1x): See manhattan_plot_most_differentially_expressed_piRNAs.png and manhattan_plot_top_piRNAs_based_on_mean_RPM.png
Additional
* Distribution of small RNA species (untreated/wt vs. parental, 1x): See distribution_heatmap.png * Differential expression tables: - miRNA_untreated_vs_parental_cells.xls - piRNA_untreated_vs_parental_cells.xls These files contain all differentially expressed miRNAs and piRNAs, respectively.
If you’d like the R code used to generate the plots, along with the raw data and full tables, just let me know—I’ll be happy to send it over.
Comprehensive smallRNA-7 profiling using exceRpt pipeline with full reference databases (v3)
Leave a reply