-
Titisee
- ‘$RECYCLE.BIN’
- 180119_M03701_0115_000000000-BFG46.zip
- 3rd_party
- Anna11_assemblies
- Anna11_trees
- bengal_results_v1_2018
- ConsPred_prokaryotic_genome_annotation
- damian_DEL
- damian_v201016
- Data_Amir_PUBLISHED (*)
- Data_Anastasia_RNASeq
- Data_Anna4_SNP
- Data_Anna5_SNP_rsync_error
- Data_Anna9_OXA-48_or_OXA-181
- Data_Francesco_16S
- Data_Holger_Pseudomonas_aeruginosa_SNP
- Data_Holger_S.epidermidis_long
- Data_Holger_S.epidermidis_short
- Data_Holger_VRE
- Data_Marc_RNA-seq_Sepidermidis
- Data_Nico_Gagliani
- Data_Nicola_Schaltenberg
- Data_Nicola_Schaltenberg_PICRUSt
- Data_Nicole10_16S_interlab_PUBLISHED (*)
- Data_Nicole6_HEV_4_SNP_calling_PE_DEL
- Data_Nicole6_HEV_4_SNP_calling_SE_DEL
- Data_Nicole6_HEV_new_orig_fastqs
- Data_Nicole6_HEV_Swantje
- Data_Nina1_Nicole7
- Data_Tam_Acinetobacter_baumannii
- Data_Ute_MKL1
- Data_Ute_RNA_1_2
- Data_Ute_RNA_4
- Data_Ute_RNA_4_2022-11_test
- DO.pdf
- Eigene_Ordner_HR
- GAMOLA2
- GAMOLA2_prototyp
- HOME_FREIBURG
- MAGpy_db
- ‘System Volume Information’
- Thomas_methylation_EPIC_DO
- TRASH
- UGENE_v1_32_data_cistrome
- UGENE_v1_32_data_ngs_classification
-
Denise_ChIPseq
- ‘$RECYCLE.BIN’
- ALL_trimmed_part_DEL
- coi_disclosure.docx
- Data_Amir_PUBLISHED_DEL
- Data_Anna12_HAPDICS_final_not_finished_DEL
- Data_Anna_Mixta_hanseatica_PUBLISHED (*)
- Data_Arck_16S_MMc_PUBLISHED (*)
- Data_Caroline_RNAseq_brain_organoids
- Data_Caroline_RNAseq_wt_timecourse
- Data_Damian
- Data_Denise_ChIPSeq_Protocol1
- Data_Denise_ChIPSeq_Protocol2
- Data_Denise_LTtrunc_H3K27me3_2_results_DEL
- Data_Denise_LTtrunc_H3K4me3_2_results_DEL
- Data_download_virus_fam
- Data_Gunnar_Yersiniomics_COPYFAILED_DEL
- Data_HepE_Freiburg_PUBLISHED (*)
- Data_INTENSO_2022-06
- Data_Jingang
- Data_Laura_ChIPseq_GSE120945
- Data_Nicole6_HEV_ownMethod
- Data_Nicole6_HEV_ownMethod_new
- Data_Paul_and_Marc_Epidome_batch3
- Data_Pietschmann_HCV_Amplicon
- Data_Soeren_RNA-seq_2023_PUBLISHING (*)
- Data_Susanne_16S_re_UNPUBLISHED
- Data_Susanne_16S_UNPUBLISHED
- Data_Svenja_RSV_Probe3_PUBLISHING (*)
- Data_Ute
- HD04-1.fasta
- m_aepfelbacher_DEL
- RNAHiSwitch
- RNAHiSwitch_
- RNAHiSwitch__
- RNAHiSwitch___
- RNAHiSwitch_milestone1
- RNAHiSwitch_milestone1_DELETED
- RNAHiSwitch_paper
- RNAHiSwitchpaper
- RNAHiSwitch_paper_DELETED
- RNAHiSwitch_paper.tar.gz
- ST772_DEL
- ‘System Volume Information’
- Ute_miRNA_results_38
- Ute_RNASeq_results
-
Elements1 (An14_RNAs)
- ‘$RECYCLE.BIN’
- chromhmm-enhancers
- Data_16S_arckNov
- Data_16S_arckNov_re
- Data_16S_arckNov_review_PUBLISHED (*)
- Data_Anna10_RP62A
- Data_Anna14_RNASeq_plus_public (#)
- Data_Anna14_RNASeq_to_be_DEL
- Data_Anna_Cutibacterium_acnes_DEL
- Data_ChIPSeq_Laura
- Data_Denise_LTtrunc_Methylation
- Data_Denise_sT_Methylation
- Data_Hannes_ChIPSeq
- Data_Holger_Klebsiella_pneumoniae_SNP_PUBLISHING (*)
- Data_Kieler_Sepi_Staemme
- Data_Nicole12_16S_Kluwe_Bunders
- Data_Pietschmann_RSV_Probe2_PUBLISHED (*)
- Data_RNA188_Paul_Becher
- Data_Silvia_RNASeq_SUBMISSION
- Data_Susanne_Amplicon_RdRp_orf1_2
- Data_Tabea_RNASeq
- Data_Tabea_RNASeq_submission
- Fastqs
- host_refs
- j_huang_raw_fq
- nr_gz_README
- ‘System Volume Information’
- tmp
- Vraw
-
Elements (Anna C.arnes)
- ‘$RECYCLE.BIN’
- ChIPSeq_pipeline_desc.docx
- ChIPSeq_pipeline_desc.fodt
- ChIPSeq_pipeline_desc.pdf
- Data_16S_Leonie_from_Nico_Gaglianis
- Data_Anna_C.acnes_PUBLISHED (*#)
- Data_Denise_LT_DNA_Bindung
- Data_Denise_LT_K331A_RNASeq
- Data_Denise_RNASeq_GSE79958
- Data_Luise_Epidome_batch1
- Data_Luise_Epidome_batch2
- Data_Luise_Epidome_test
- Data_Luise_Pseudomonas_aeruginosa_PUBLISHED (*)
- Data_Nicole6_HEV_benchmark
- Data_Nicole6_HEV_Swantje1_blood
- Data_Susanne_spatialRNA_2022.9.1_backup
- Data_Swantje_HEV_using_viral-ngs
- Data_Tam_RNASeq3
- Fastqs_19-21
- picrust2_out_2024_2
- RNASeq_pipeline_desc.docx
- RNASeq_pipeline_desc.pdf
- ‘System Volume Information’
- VIPER_static_DEL
-
Elements (j_huang_until_201904)
- ‘$RECYCLE.BIN’
- bacteria_refseq
- bacteria_refseq.zip
- Data_2019_April
- Data_2019_August
- Data_2019_July
- Data_2019_June
- Data_2019_May
- Data_2019_September
- Data_Becher_Damian_Picornavirus_BovHepV
- Data_Laura_MP_RNASeq
- Data_Nicole6_HEV_Swantje2
- Data_Rotavirus
- Data_Rotavirus_DEL
- Data_Song_RNASeq_PUBLISHED (*)
- Data_Xiaobo_10x
- ‘Install Western Digital Software for Mac.dmg’
- ‘Install Western Digital Software for Windows.exe’
- j_huang_until_201904 (#)
- sage_jhuang_DEL
- ‘System Volume Information’
-
Elements (Indra HAPDICS)
- ‘$RECYCLE.BIN’
- align_assem_res_DEL
- Data_Anna11_Pair1-6_P6
- Data_Anna11_Sepdermidis_DEL
- Data_Anna12_HAPDICS_HyAsP (#)
- Data_Anna_HAPDICS_review (#)
- Data_Anna_HAPDICS_RNASeq_rawdata (#)
- Data_Gunnar_MS
- Data_Holger_Klebsiella_pneumoniae_SNP_PUBLISHING (*)
- Data_Indra0_pioneer (#)
- Data_Indra10_K9me3S10ph_r2 (#)
- Data_Indra2_RNASeq (#)
- Data_Indra3_H3K4me3 (#)
- Data_Indra3_H3K4me3_incomplete_DEL (#)
- Data_Indra4_H3K27me3 (#)
- Data_Indra5_H3K27ac (#)
- Data_Indra7_H3K4me1 (#)
- Data_Indra8_H3K4me3 (#)
- Data_Indra9_K9me3S10ph_r1 (#)
- Data_Indra_H3K27ac_public (#)
- Data_Indra_H3K4me3_public (#)
- Data_Indra_RNASeq_GSM2262901 (#)
- Data_Indra_TypeI_IFNs_and_TNF (#)
- Data_Laura1_Indra2_RNASeq (#)
- Data_Marie_Indra_H3S10 (#)
- data_overview.txt
- EXCHANGE_DEL
- HAPDICS_hyasp_plasmids (#)
- HD04 (#)
- HD15_with_10 (#)
- HD15_without_10 (#)
- HD17 (#)
- HD21 (#)
- HD25 (#)
- HD26 (#)
- HD31 (#)
- HD33 (#)
- HD39 (#)
- HD43 (#)
- HD46 (#)
- HD59 (#)
- Linux_DELLWorkstation_C_Users_indbe_VirtualBoxVMs
- m_aepfelbacher
- m_aepfelbacher.zip
- ‘System Volume Information’
- UKE_DELLWorkstation_C_Users_indbe_Desktop
-
Seagate 1
- ‘$RECYCLE.BIN’
- 2017-18_raw_data
- batch_200314_incomplete
- batch_200319
- batch_200325
- ChromHMM_Dir
- chromhmm-enhancers
- Data_Anna12_HAPDICS_final
- Data_Arck_MeDIP
- Data_Denise_ChIPSeq_Protocol1
- Data_Denise_sT_H3K27me3
- Data_Denise_sT_H3K4me3
- Data_ENNGS_pathogen_detection_pipeline_comparison
- Data_Laura0
- Data_Laura_16S
- Data_Laura_16S_2
- Data_Laura_16S_2_re
- Data_Laura_16S_2re
- Data_Laura_16S_merged
- Data_Laura_ChIPseq_GSE120945
- Data_Laura_plasmid
- Data_Martin_mycoplasma
- Data_Nicola_Gagliani
- Data_Nicole16_parapoxvirus
- Data_Nicole_16S_Christmas_2020
- Data_Nicole_16S_Christmas_2020_2
- Data_Petra_Arck
- Downloads_2021-01-18_DEL
- Downloads_DEL
- GAMOLA2_prototyp
- j_huang_201904_202002
- j_huang_202007_202012
- m_aepfelbacher.zip
- m_error_DEL
- Project_h_rohde_Susanne_WGS_unbiased_DEL.zip
- RNA_seq_analysis_tools_2013
- Seagate
- Start_Here_Mac.app
- ‘System Volume Information’
- trimmed
-
Seagate 2
- ‘$RECYCLE.BIN’
- 201030_M03701_0207_000000000-J57B4.zip
- 91.orf
- 91.orf.fai
- 91.pep
- ALL
- ALL83
- Autorun.inf
- Data_Anna12_HAPDICS_raw_data_shovill_prokka
- Data_Anna_HAPDICS_RNASeq
- Data_Anna_HAPDICS_WGS_ALL
- Data_Christopher_MeDIP_MMc_PUBLISHED (*)
- Data_Denise_RNASeq
- Data_Denise_RNASeq_trimmed_DEL
- Data_Gunnar_Yersiniomics_IMCOMPLETE_DEL
- Data_HEV
- Data_HEV_Freiburg_2020
- Data_Manthey_16S
- Data_Nicole_16S_Hamburg_Odense_Cornell_Muenster
- Data_Nicole4_TH17
- Data_Nicole_HDV_Recombination_PUBLISHED (*)
- Data_Pietschmann_RSV_Probe_PUBLISHED (*)
- Data_Susanne_Carotis_RNASeq_PUBLISHING (*)
- dgaston-dec-06-2012-121211124858-phpapp01.pdf
- dna2.fasta.fai
- f1_R1_link.sh
- f1_R2_link.sh
- fastq_HPI_bw_2019_08_and_2020_02
- GSE128169_family.soft.gz
- GSE128169_series_matrix.txt.gz
- HD04.infection.hS_vs_HD04.nose.hS_annotated_degenes.xls
- HD12
- HyAsP_bold
- HyAsP_complete_genomes
- HyAsP_incomplete_genomes
- HyAsP_normal
- HyAsP_normal_sampled_input
- m_aepfelbacher.zip
- ppat.1009304.s016.tif
- Qi_panGenome
- README
- ‘README(1)’
- rtpd_files
- rtpd_files_DEL
- sam2bedgff.pl
- Seagate
- ‘sequence(1).txt’
- sequence.txt
- Seq_VRE_hybridassembly
- s_hero2x
- Start_Here_Mac.app
- Start_Here_Win.exe
- ‘System Volume Information’
- tileshop.fcgi
- video.zip
- Warranty.pdf
-
Seagate 3 (/home/jhuang backup DATA_COPY_FROM_hamburg)
- Autorun.inf
- DATA_COPY_DEL
- DATA_COPY_FROM_hamburg
- Seagate
- Start_Here_Mac.app
- Start_Here_Win.exe
- Warranty.pdf
-
Seagate 4 (ERROR)
-
Smarty
- ALIGN_ASSEM
- Blast_db
- Data_16S_Degenhardt_Marius_DEL
- Data_Emilia_MeDIP
- Data_Gunnar_Yersiniomics_DEL
- Data_Manja_RNAseq_Organoids_Virus
- Data_Paul_Staphylococcus_epidermidis
- Data_Susanne_spatialRNA
- Data_Ute_RNA_3
- DjangoApp_Backup_2023-10-30
- lost+found
- ref
- temporary_files_DEL
-
Volume (466G)
- Data_Indra3_H3K4me3_results_picard
- Data_Indra4_H3K27me3_results_picard
- Data_Indra5_H3K27ac_results_picard
- finding_gap_files_2023
- HOME_FREIBURG
- ls: cannot access ‘results_H3K27ac’: Input/output error
-
DATA_Intenso
- 150810_M03701_0019_000000000-AFJFK
- chipseq
- ChipSeq_Raw_Data3_171009_NB501882_0024_AHNGTYBGX3
- CLC_Data
- DATA (empty? if yes, delete it!)
- Data_Anna1_1585_RNAseq
- Data_Anna2_CO6114
- Data_Anna3_VRE_Ausbruch
- Data_Anna4_SNP
- Data_Anna5_SNP
- Data_Anna6_RNASeq
- Data_Anna7_RNASeq_Cytoscape
- Data_Anna8_RNASeq_static_shake_deprecated
- Data_Carolin1_16S
- Data_Gagliani1_18S_16S
- Data_Gagliani2_enriched_16S
- Data_Laura
- Data_Laura_2
- Data_Laura_3
- Data_Nicole10_16S_interlab
- Data_Nicole1_Tropheryma_whipplei
- Data_Nicole3_TH17_orig
- Data_Nicole7_Anelloviruses_Polyomavirus
- Data_Nicole8_Lamprecht
- Data_Nicole9_Hund_Katze_Mega
- Data_Nina1_merged
- Data_Nina1_Nicole5_1-76
- Data_SPANDx1_Kpneumoniae_vs_Assembly1
- Data_Susanne_WGS_3amplicons
- Data_Thaiss1_Microarray
- Data_Thaiss2_Microarray
- Downloads
- Downloads2
- Downloads_DEL
- Fastqs
- galaxy_tools
- HOME_FREIBURG_DEL
- m_aepfelbacher
- m_aepfelbacher_DEL.zip
- MauveOutput
- mom-baby_com_cn
- PAPERS
- PENDRIVE_cont
- results_K27
- TB
- ‘VirtualBox VMs’
- VirtualBox_VMs
- ‘VirtualBox VMs2’
- ‘VirtualBox VMs2_DEL’
- ‘VirtualBox VMs_DEL’
- VirtualBox_VMs_DEL
- websites
- Work_Dir2
- Work_Dir2_SGE
- Work_Dir_dM_broad_mockinput
- Work_Dir_dP_broad_mockinput
- Work_Dir_mock_broad_mockinput
- Work_Dir_WAC_broad_mockinput
- Work_Dir_WAP_broad_mockinput
-
DATA
- Data_Biobakery
- Data_Damian
- Data_Jiline_Transposon
- Data_Jiline_Transposon2
- Data_Jiline_Yersinia_SNP
- Data_Luise_Sepi_STKN
- Data_Marius_16S
- Data_Nicole_CRC1648
- Data_Patricia_Sepi_5Samples
- Data_PaulBongarts_S.epidermidis_HDRNA
- Data_Susanne_MPox
- Data_Tam_ABAYE_RS05070_on_A_calcoaceticus_baumannii_complex_DUPLICATED_DEL
- Data_Xiaobo_10x_2
- Data_Xiaobo_10x_3
- Mouse_HS3ST1_12175_out
- Mouse_HS3ST1_12373_out
- Talk_Nicole_CRC1648
- Talks_Bioinformatics_Meeting
- Talks_including_DEEP-DV
- Talks_resources
-
DATA_A
- Data_Damian_NEW_CREATED
- Data_Nicole8_Lamprecht_new_PUBLISHED
- Data_R_bubbleplots
- Data_Samira_RNAseq
- Data_Ute_TRANSFERED_DEL
- Paper_Target_capture_sequencing_MHH_PUBLISHED
-
DATA_B
- Antraege_
- Data_16S_Nicole_210222
- Data_Adam_Influenza_A_virus
- Data_Anna_Efaecium_assembly
- Data_Bactopia
- Data_Ben_RNAseq
- Data_DAMIAN_endocarditis_encephalitis
- Data_Denise_sT_PUBLISHING
- Data_Django
- Data_Fran2_16S_func
- Data_Gunnar_Yersiniomics
- Data_Holger_5179-R1_vs_5179
- Data_Holger_MT880870_MT880872_Annotation
- Data_Holger_S.epidermidis_1585_5179_HD05
- Data_Johannes_PIV3
- Data_Luise_Epidome_longitudinal_nose
- Data_Manja_Hannes_Probedesign
- Data_Manja_RNAseq_Organoids
- Data_Manja_RNAseq_Organoids_Merged
- Data_Manja_RNAseq_Organoids_Virus
- Data_Marc_AD_PUBLISHING
- Data_Marc_RNA-seq_Saureus_Review
- Data_Nicole_16S
- Data_Nicole_cfDNA_pathogens
- Data_Ring_and_CSF_PegivirusC_DAMIAN
- Data_Soeren_RNA-seq_2022
- Data_Song_Microarray
- Data_Susanne_Carotis_MS
- Data_Susanne_Omnikron
- Data_Viro
- Doktorarbeit
- Poster_Rohde_20230724
-
DATA_C
- 16304905.fasta
- ’16S data manuscript_NF.docx’
- 180820_2_supp_4265595_sw6zjk.docx
- 180820_2_supp_4265596_sw6zjk.docx
- 1a_vs_3.csv
- 2014SawickaBBA.pdf
- 20160509Manuscript_NDM_OXA_mitKomm.doc
- 2022-10-27_IRI_manuscript_v03_JH.docx
- ‘20221129 Table mutations.docx’
- ‘2.05.01.05-A01 Urlaubsantrag-Shuting-beantragt.pdf’
- 220607_Agenda_monthly_meeting.pdf
- 230602_NB501882_0428_AHKG53BGXT.zip
- 362383173.rar
- 3932-Leber
- 562.9459.1.fa
- 562.9459.1_rc.fa
- ‘add. Figures Hamburg_UKE.pptx’
- align_4l_on_FJ705359
- align_4p_on_FJ705359
- all_gene_counts_with_annotation.xlsx
- All_indels_annotated_vHR.xlsx
- ‘Amplikon_indeces_Susanne +groups.xlsx’
- Amplikon_indeces_Susanne.xlsx
- app_flask.py
- ASA3P.pdf
- assembly
- Astrovirus.pdf
- Aufnahmeantrag_komplett_10_2022.pdf
- Bacterial_pipelines.txt
- bacto
- bam2fastq_mapping_again
- bengal3_ac3.yml
- bengal3ac3.yml
- bengal-bay-0.1.json
- Biopython
- BioPython
- call_shell_from_Ruby.png
- ChIPSeq_pipeline_desc.docx
- ChIPSeq_pipeline_desc.pdf
- chipster
- coefficients_csaw_vs_diffreps.xlsx
- COMMANDS
- Comparative_genomic_analysis_of_eight_novel_haloal.pdf
- COMPSRA_uke_DEL.jar
- ‘Copy of pool_b1_CGATGT_300.xlsx’
- CvO_Klassenliste_7_3.pdf
- damian_GUI
- damian_nodbs
- Data_16S_Arck_vaginal_stool
- Data_16S_benchmark
- Data_16S_benchmark2
- Data_16S_Birgit
- Data_16S_BS052
- Data_16S_Christner
- Data_16S_gcdh_BKV
- Data_16S_Leonie
- Data_16S_PatientA-G_CSF
- Data_16S_Schaltenberg
- Data_Alex1_Amplicon
- Data_Alex1_SNP
- Data_Analysis_for_Life_Science
- Data_Anastasia_RNASeq_PUBLISHING
- Data_Anna12_HAPDICS_final
- Data_Anna13_vanA-Element
- Data_Anna14_PACBIO_methylation
- Data_Anna_C.acnes2_old_DEL
- Data_Anna_gap_filling_agrC
- Data_Anna_Kieler_Sepi_Staemme
- Data_Anna_MT880872_update
- Data_Baechlein_Hepacivirus_2018
- Data_Bornavirus
- Data_Christine_cz19-178-rothirsch-bovines-hepacivirus
- Data_Christopher_MeDIP_MMc_published
- Data_ChristophFR_HepE_published
- Data_CSF
- Data_Daniela_adenovirus_WGS
- Data_Emilia_MeDIP
- Data_Emilia_MeDIP_DEL
- Data_Francesco2021_16S
- Data_Francesco2021_16S_re
- Data_Gunnar_MS
- Data_Hannes_ChIPSeq
- Data_Hannes_RNASeq
- Data_Holger_Efaecium_variants_PUBLISHED
- Data_Holger_Pseudomonas_aeruginosa_SNP
- Data_Holger_VRE
- Data_Holger_VRE_DEL
- Data_Icebear_Damian
- Data_Indra3_H3K4_p2_DEL
- Data_Indra6_RNASeq_ChipSeq_Integration_DEL
- Data_Indra_Figures
- Data_Indra_RNASeq_GSM2262901
- Data_Jingang
- Data_jupnote
- Data_KatjaGiersch_new_HDV
- Data_Manja_RPAChIPSeq_public
- Data_Manuel_WGS_Yersinia
- Data_Manuel_WGS_Yersinia2_DEL
- Data_Manuel_WGS_Yersinia_DEL
- Data_Marcus_tracrRNA_structures
- Data_Mausmaki_Damian
- Data_methylome_MMc
- Data_MHH_Encephalitits_DAMIAN
- Data_Nicola_Gagliani
- Data_Nicola_Schaltenberg
- Data_Nicola_Schaltenberg_PICRUSt
- Data_Nicole1_Tropheryma_whipplei
- Data_Nicole5
- Data_Nicole5_77-92
- Data_parainfluenza
- Data_PaulBecher_Rotavirus
- Data_Paul_Staphylococcus_epidermidis
- Data_Pietschmann_HCV_Amplicon_bigFile
- Data_Piscine_Orthoreovirus_3_in_Brown_Trout
- Data_Proteomics
- Data_R_courses
- Data_RNABioinformatics
- Data_RNAKinetics
- Data_SARS-CoV-2
- Data_SARS-CoV-2_Genome_Announcement_PUBLISHED
- Data_Seite
- Data_snakemake_recipe
- Data_Song_aggregate_sum
- Data_Susanne_Amplicon_haplotype_analyses_RdRp_orf1_2_re
- Data_Susanne_Amplicon_RdRp_orf1_2_re
- Data_Susanne_Carotis_spatialRNA_PUBLISHING
- Data_Susanne_WGS_unbiased
- Data_Tabea_RNASeq
- Data_temp
- Data_Thaiss1_Microarray_new
- Data_Tintelnot_16S
- Data_viGEN
- Data_Wuenee_Plots
- Data_Yang_Poster
- DEEP-DV
- DOKTORARBEIT
- empty.fasta
- enhancer-snakemake-demo
- exchange.txt
- exdata-data-NEI_data.zip
- Fran_16S_Exp8-17-21-27.txt
- GAMOLA2
- genes_wac6_wap6.xls
- Genomic_Data_Science
- go1.13.linux-amd64.tar.gz.1
- HEV_aligned.fasta
- hev_p2-p5.fa
- hg19_gene_annotations
- hg19.rmsk.bed
- Hotmail_to_Gmail
- HPI_DRIVE
- HPI_samples_for_NGS_29.09.22.xlsx
- Indra_Thesis_161020.pdf
- install_nginx_on_hamm
- INTENSO_DIR
- interlab_comparison_DEL
- Learn_UGENE
- LOG
- LOG_p954_stat
- ‘LT K331A.gbk’
- Manuscript_10_02_2021.docx
- Manuscript_Epigenetics_Macrophage_Yersinia
- Manuscript_RNAHiSwitch
- map_corrected_backup.txt
- MeDIP_Emilia_copy_DEL
- metadata-9563675-processed-ok.tsv
- Metagenomics_Tools_and_Insights.pdf
- Method_biopython
- ‘Miseq Amplikon LAuf April.xlsx’
- mkg_sprechstundenflyer_ver1b_dezember_2019.pdf
- MMcPaper
- multiqc_config.yaml
- my_flask
- Nachweis_Bakterien_Viren_im_Hochdurchsatz.pdf
- Nanopore.handouts.pdf
- NGS
- NGS.tar.gz
- Nicole8_Lamprecht_logs
- ‘Norovirus paper Susanne 191105.docx’
- Okazaki-Seq_Processing
- p11326_OMIKRON3398_corsurv.gb
- p11326_OMIKRON3398_corsurv.gb_converted.fna
- pangenome-snakemake-master.zip
- pangenome-snakemake_zhaoc1
- papers
- parseGenbank_reformat.py
- PhyloRNAalifold.pdf
- ‘phylo tree draft.pdf’
- pool_b1_CGATGT_300.zip
- pyflow-epilogos
- qiime_params_backup.txt
- qiime_params_s16_s18.txt
- qiime_params.txt
- Rawdata_Readme.pdf
- raw_data_rnaseq_Indra
- R_cats_package
- R_DataCamp
- README_R
- README_RNAHiSwitch_DEL
- results_description.html
- rnaalihishapes.tar.gz
- RNAConSLOptV1.2
- RNAConSLOptV1.2.tar.gz
- RNAHeliCes
- RNA_li_HeliCes
- RNAliHeliCes
- RNAliHeliCes_Relatedshapes_modified
- RNA-NGS_Analysis_modul3_NanoStringNorm
- RNA-NGS_Analysis_modul3_NanoStringNorm.zip
- rnaseq_length_bias.pdf
- roentgenpass.pdf
- R_refcard
- ‘RSV GFP5 including 3`UTR.docx’
- R_tutorials-master
- R_tutorials-master.zip
- salmon_tx2gene_chrHsv1.tsv
- salmon_tx2gene_GRCh38.tsv
- ‘sample IDs_Lamprecht.xlsx’
- SERVER
- SnakeChunks
- Snakefile_list
- snakePipes
- SNPs_on_pangenome.txt
- Source_Classification_Code.rds
- S_staphylococcus_annotated_diff_expr.xls
- SUB10826945_record_preview.txt
- summarySCC_PM25.rds
- Supplementary_Table_S3.xlsx
- test_raw_data_dnaseq
- test_raw_data_rnaseq
- to_Francesco
- tutorial-rnaseq.pdf
- ukepipe
- ukepipe_nf
- UniproUGENE_UserManual.pdf
- Untitled1.ipynb
- Untitled2.ipynb
- Untitled3.ipynb
- Untitled.ipynb
- untitled.py
- var_www_DjangoApp_mysite2_2023-05
- WAC6h_vs_WAP6h_down.txt
- WAC6h_vs_WAP6h_up.txt
- webapp.tar.gz
- x.log
-
DATA_D
-
Books_DA_for_Life
-
Data_Marc_RNA-seq_Sepidermidis -> /media/jhuang/Titisee/Data_Marc_RNA-seq_Sepidermidis
-
Data_Patricia_Transposon
-
Data_Paul_HD46_1-wt_resequencing
-
Data_Pietschmann_Mutations
-
Data_Samira_Manuscripts
-
Data_Sanam_DAMIAN
-
Data_Silvia_VoltRon_Debug
-
Datasize_calculation_based_on_coverage.txt
-
Data_Soeren_RNA-seq_2023_PUBLISHING -> /media/jhuang/Elements/Data_Soeren_RNA-seq_2023_PUBLISHING/
-
Data_Sven
-
Data_Svenja_RSV_Probe3_PUBLISHING -> /media/jhuang/Elements/Data_Svenja_RSV_Probe3_PUBLISHING
-
Data_Tam_variant_calling
-
Data_Ute -> /media/jhuang/Elements/Data_Ute/
-
126.3.1.1.2.010.02 (enp0s31f6: 10.169.63.124); 126.3.1.1.2.010.03 (eno2: 10.169.63.115); 126.2.1.1.2.010.04 (enp4s0: 10.169.63.113)
-
Author Archives: gene_x
Fitting Models for Boxplot Data
在箱线图(Boxplot)中,通常不涉及直接拟合曲线,因为箱线图的主要目的是展示数据分布的统计特征,而不是反映具体的函数关系。然而,如果你需要在箱线图中添加趋势线或拟合曲线,这通常是为了提供更多的背景信息或分析数据的变化趋势。
箱线图主要用于:
- 展示数据分布的概况:包括中位数、四分位数范围(IQR)以及异常值。
- 比较多个数据组的分布:通过箱线图的高度和位置比较不同数据组的差异。
- 识别异常值:通过“须线”之外的数据点定位异常值。
尽管箱线图本身不直接涉及拟合,但在以下情景下,可以结合拟合曲线:
-
数据趋势分析:
- 如果你的数据是按时间、空间或其他连续变量分组的,你可以在箱线图上添加趋势线(如线性回归曲线)以显示数据随分组变量的变化趋势。
- 例如,用箱线图展示某一变量随时间的变化,同时用曲线拟合整体趋势。
-
概率分布或密度曲线:
- 你可以将箱线图和核密度估计(KDE)曲线结合,显示数据分布的密度。
-
数学模型拟合:
- 如果你正在研究某种函数关系,可以根据每组数据的统计特征(如中位数)拟合一条曲线。
在数据可视化工具(如Python的Matplotlib或Seaborn库)中,可以通过以下步骤实现:
-
绘制箱线图:展示每组数据的分布。
-
计算趋势线或拟合曲线:根据数据组的统计特征(如中位数或平均值),计算拟合曲线的参数。
Choosing a Fitting Model Based on the complexity of the data relationships, select an appropriate fitting model: Linear Model: Assumes a linear relationship between the data feature values. Polynomial Model: If the trend is nonlinear, a quadratic or higher-order polynomial is suitable for fitting. Nonlinear Model: For example, exponential, logarithmic, or other complex models. Linear Fitting Formula: y=mx+b Where: y is the feature value (such as the median or mean). x is the group identifier (e.g., A=1, B=2, C=3). m is the slope, and bb is the intercept. Polynomial Fitting Formula (example for quadratic): y=ax2+bx+c Where: a,b,c are the fitting parameters.
-
叠加曲线:将拟合曲线叠加到箱线图上。
import numpy as np import matplotlib.pyplot as plt import seaborn as sns from scipy.stats import linregress # 示例数据:三个组的数据 data = { 'Group A': [12, 15, 14, 19, 22, 17, 15, 24, 13, 18], 'Group B': [22, 17, 15, 24, 23, 20, 18, 21, 25, 19], 'Group C': [13, 18, 20, 16, 22, 21, 20, 19, 18, 20] } # 将数据转换为适合绘制箱线图的格式 import pandas as pd df = pd.DataFrame(data) # 绘制箱线图 plt.figure(figsize=(8, 6)) sns.boxplot(data=df) # 计算每组数据的中位数或平均值 groups = np.array([1, 2, 3]) # 对应 'Group A', 'Group B', 'Group C' medians = df.median().values # 使用中位数 # 线性拟合 slope, intercept, r_value, p_value, std_err = linregress(groups, medians) # 拟合曲线 fitted_values = slope * groups + intercept # 叠加拟合曲线 plt.plot(groups, fitted_values, label='线性拟合趋势线', color='red', linewidth=2) ##箱线图展示了每个组的数据分布,包括中位数、四分位数、异常值等。 ##红色(或绿色)线条显示了拟合曲线,表示中位数随组别变化的趋势。 ## 多项式拟合(例如二次拟合) #coefficients = np.polyfit(groups, medians, 2) # 二次拟合 #fitted_curve = np.polyval(coefficients, groups) # ## 叠加拟合曲线 #plt.plot(groups, fitted_curve, label='二次拟合曲线', color='green', linewidth=2) # 设置图形标题和标签 plt.title('箱线图与线性拟合曲线') plt.xlabel('组别') plt.ylabel('值') plt.xticks([0, 1, 2], ['Group A', 'Group B', 'Group C']) # 显示图例 plt.legend() # 显示图形 plt.show() #数据输入:使用一个字典 data 来表示每个组的数据。 #绘制箱线图:seaborn.boxplot() 用于绘制箱线图。 #计算中位数:通过 df.median().values 提取每组的中位数,作为拟合曲线的参考数据点。 #线性拟合:使用 scipy.stats.linregress 计算线性拟合的斜率和截距。 #叠加拟合曲线:将拟合曲线通过 plt.plot() 叠加到箱线图上,拟合曲线使用红色线条表示。 #设置标题、标签和图例:增强图形的可读性。
Investigation of the BKPyV life cycle and antiviral mechanisms of BKPyV-specific inhibitors in relevant in vitro models
Human Polyomaviruses (PyV) are highly prevalent and establish a lifelong asymptomatic persistence in the healthy immunocompetent host1,2. However, under immunosuppression, these viruses can reactivate, causing life-threatening infections (e.g. BKV caused PyV associated nephropathy, PVAN) due to uncontrolled viral replication1. Currently, no specific antiviral treatment is available This lack of effective therapeutics is partly due to the lack of small animal models and the availability of only poor surrogate in vitro/in vivo systems. We have recently identified 16 small molecule inhibitors, C1-16, against BKV using a phenotypic high throughput screen (Kraus et al., unpublished). For the further development of these inhibitors, it is essential to have an understanding of their cellular target structure and/or which part of the viral life cycle they inhibit.
Within this project we will gain a better understanding of the BKV the life cycle in relevant infection systems (e.g. primary cells and organoids). We will use these previously identified antiviral compounds in terms of their interference with essential host structures for viral reproduction (transport vesicles, nuclear uptake, replication compartments or vesicle dependent egress). Furthermore, we will characterize specific viral inhibitors at the molecular and structural level.
The project uses organoids and primary cells as infection models and BKV inhibitor characterization. It applies confocal live cell microscopy to follow BKV entry/ spread. Furthermore, the project takes advantage of X-ray crystallography to characterize inhibitor/target interaction.
References
Chong S, Antoni M, Macdonald A, Reeves M, Harber M, Magee CN (2019) BK virus: Current understanding of pathogenicity and clinical disease in transplantation. Rev Med Virol 29:e2044. Abstract
Theiss JM, Günther T, Alawi M, Neumann F, Tessmer U, Fischer N, Grundhoff A (2015) A Comprehensive Analysis of Replicating Merkel Cell Polyomavirus Genomes Delineates the Viral Transcription Program and Suggests a Role for mcv-miR-M1 in Episomal Persistence. PLoS Pathog 11:e1004974. Abstract
重新审视诊断:微生物细胞游离DNA测序:解决与植入物相关的心血管感染中的未解决挑战
-
心血管植入物相关感染(CVIAI)是一个重大挑战,对于心脏植入电子设备(CIEDs)的死亡率约为15%,而对于假体瓣膜性心内膜炎(PVE)和血管移植物或内膜移植物感染(VGEI)的死亡率则为15%到80%。
-
快速识别病原体对于早期启动有效的CVIAI治疗至关重要,而血液培养目前仍是诊断的金标准。
-
然而,依赖生长的培养方法可能由于感染由挑剔性微生物引起或患者曾接受抗生素治疗而导致灵敏度下降。
-
正因如此,通过血液培养进行病因明确的CVIAI病例的比例通常较低,约为50%左右。
-
结果,确诊病因通常依赖于来自组织样本或在长时间抗生素治疗后植入物取出的低产量培养。
-
由于只有少数CVIAI病例会进行外科修复或设备移除,因此大量病例未能识别出致病微生物。
-
分子技术,如广谱PCR或物种特异性PCR,可以克服培养方法的不足。
-
事实上,广谱PCR检测已成功应用于提取的心脏组织,其检测率显著高于传统培养。
-
因此,广谱PCR于2023年被纳入了杜克标准用于感染性心内膜炎的诊断。
-
然而,直接从血液中检测病原体的方法在败血症中大多未能成功,可能是因为病原负荷低于大多数现有PCR试剂的分析灵敏度。
-
因此,亟需创新的、适用于外周血并提高灵敏度的、无需培养的检测方法。
-
近年来,采用无偏序列测定(即临床宏基因组学)进行假设自由的病原检测的新策略应运而生。
-
Microbial cell free DNA-sequencing(mcfDNA-Seq),其靶向微生物脱落到血液中的小片段DNA,已在覆盖面和分析灵敏度方面显示出特别有前景的结果。
-
此方法使得可以直接从败血症患者的血样中进行检测。
-
mcfDNA-Seq比传统培养方法更快,因为培养可能需要几天或几周的时间才能检测到生长缓慢的微生物。
-
虽然广谱PCR也加快了诊断速度,但mcfDNA-Seq无需假设,允许通过单一检测广泛检测病原体。
-
已有多个商业平台提供mcfDNA-Seq检测,如在美国广泛使用的Karius测试和在欧洲使用的Noscendo的DISQVER。
-
最近一项关于败血症患者的研究报告了mcfDNA-Seq与传统血液培养之间93.7%的一致性,并且分子检测的检出率显著提高(169个病因确认病例对比132个)。
-
这使得mcfDNA-Seq在CVIAI诊断中尤为有趣,特别是因为该方法不依赖于难以获取的活检或设备移除。
-
然而,mcfDNA-Seq在CVIAI中的应用经验仍然有限。
-
在一项小规模的概念验证研究中,mcfDNA-Seq在7名VGEI感染患者中检测到了3例病原。
-
另一项针对感染性心内膜炎(IE)患者的研究中,在34名IE患者中(其中22名为PVE,65%),mcfDNA-Seq在24例中(71%)为阳性,包括6名血液培养阴性的心内膜炎患者中的3例(50%)。
-
类似地,在23例确诊的IE病例中,包括12例PVE或CIEDs相关的心内膜炎,mcfDNA-Seq和血液培养的灵敏度都为87%。
-
尽管从抗生素治疗到mcfDNA采样的平均时间明显长于从抗生素治疗到血液培养采样的平均时间(11.7天对比0.09天,p值<0.01)。
-
mcfDNA-Seq对抗生素治疗的持续检测结果尤为引人关注,mcfDNA-Seq在治疗后中位数为38.1天仍然可检测,而血液培养的可检测时间仅为3.7天(比例比值,2.952;p值=0.028)。
-
近期的摘要评估了mcfDNA-Seq在由金黄色葡萄球菌或表皮葡萄球菌引起的败血症中预测CIED参与的潜力,通过量化血浆中的mcfDNA-Seq读取数。
-
作者建议,将血浆mcfDNA-Seq与相关临床参数结合,可以为识别无需设备移除的患者提供有价值的见解。
-
同样,Eichenberger等(2015)表明,与局部疾病患者相比,患有败血症性和转移性感染的患者mcfDNA-Seq检测阳性的时间较长(22天对比8天,p=0.0054),而接受外科清创或设备移除的患者mcfDNA降解速度更快。
-
因此,mcfDNA-Seq可能能够检测到血管移植物的持续感染。
-
据我们所知,mcfDNA-Seq尚未用于监测无法手术治疗的CVIAI患者接受抑菌治疗时的情况。
-
然而,基于上述结果,进一步的研究似乎是必要的,因为该技术可能有助于避免不必要的长期使用抗生素。
-
mcfDNA-Seq作为一种诊断工具有一些重要的局限性。
-
一个主要挑战是将测序结果与临床发现相关联的困难,因为微生物DNA的检测并不总是表示活跃的感染。
-
特别是在低读取数情况下,常见污染物(如凝固酶阴性葡萄球菌或皮肤分枝杆菌)可能会显著影响cfDNA测序的分析灵敏度和特异性,这需要根据具体物种、平台和可能的应用设置严格的解释阈值。
-
还存在检测来自无关源(例如,由肠道细菌转移或刷牙引起的短暂性菌血症)的DNA的风险,这可能导致误诊和不必要或过长时间的抗生素治疗。
-
此外,和传统的培养法一样,mcfDNA-Seq也容易受到污染,尤其是在样本采集和后续处理过程中。
-
微生物学家、信息学家和传染病专家的跨学科团队,以及来自患者和对照队列的cfDNA数据库,是解释患者结果的关键。
-
这种方法可以设置测序阈值,确保更准确的结果。
-
此外,尽管该方法能够检测病原体,但它并不一定能提供广泛的基因组覆盖,限制了其预测抗微生物药物敏感性或进行菌株分型的能力。
-
将mcfDNA-Seq纳入常规诊断,即使在大型大学医院中,也面临着显著的挑战,因为其工作流程复杂,需要专门的专业知识,而且缺乏明确的监管框架。
-
这种复杂性,以及缺乏标准化协议,可能会延缓结果的交付,尤其是在CVIAI等复杂病例中,快速获得结果至关重要。
-
确保cfDNA测序的实验室质量控制和认证非常复杂,特别是在平衡上述要求和对快速结果的需求时。
-
此外,积累经验和数据,通过精心设计的前瞻性队列研究,是推动该新兴领域专业化的关键。
-
目前,大多数研究是以病例系列研究的形式进行的,这种研究本身存在偏倚。
-
此外,许多研究由外部商业供应商协助进行,这些供应商通常无法全面获取患者数据和医学专业知识。
-
这突显出验证cfDNA测序临床效用的设计良好的研究的缺乏。因此,这些公司需要对进行严格的同行评审研究负责。
-
作为临床微生物学家和传染病专家,我们应该要求设计良好的研究,以更好地定义cfDNA测序的附加价值,然后再倡导将cfDNA检测作为常规方法。
-
mcfDNA-Seq在地区医院的应用是一个关键问题,也需要进一步讨论。
-
虽然大型学术中心可能拥有采纳此技术的资源,但地区医院可能会面临成本和物流的挑战,因此提供cfDNA测试的可行性较低。
-
一个解决方案是使用集中实验室,提供快速的cfDNA测序服务,并能在短时间内交付结果,从而帮助进行及时的临床决策。
-
然而,在整个过程中维护数据透明性——包括数据库和控制结果——是至关重要的。
-
必须与地区医院的微生物学和传染病专家有效沟通这些信息,以确保结果的准确解释,并结合特定患者的情况。
-
一个主要限制因素阻碍了mcfDNA-Seq广泛应用的是其相当高的成本制了其在常规诊断中的可及性,还对该领域大规模独立研究的开展构成了重大挑战。
-
然而,将mcfDNA-Seq纳入前瞻性研究将是识别该测试额外诊断价值并证明保险公司报销的必要前提。
-
由于高成本部分归因于相关测序技术和分析的垄断,进一步研究开放的测序管道和数据库,以及利用替代测序平台似乎是必要的。
-
总之,mcfDNA-Seq正作为一种有前景、无偏见、非侵入性的CVIAI诊断工具崭露头角。
-
该方法的潜力不仅限于病原体识别,还可能作为潜在的标志物,阐明植入物的实际涉及情况,并评估感染的持续性,特别是在无法进行手术干预的患者中。
-
利用mcfDNA-Seq的能力进行个性化医学可能通过提供关于感染动态和治疗反应的个体化见解,改变诊断格局。
-
然而,想要实现这些潜在的好处,将需要通过设计良好的前瞻性研究对心血管植入物相关感染进行广泛研究,严格的“针对性”纳入标准,聚焦于高风险治疗失败或复发的人群(例如,需要长期抑制性治疗的不可手术治疗的CVIAI感染)。
-
这将需要大学医院主导并支持的更多研究倡议,推动跨学科合作,监督从mcfDNA-Seq采样指征到结果解释的过程,并直接影响患者护理。
-
此外,国家或国际研究资助对于支持该领域独立研究工作,并为住院指征提供足够的保险覆盖至关重要。
-
这种共同努力对于明确mcfDNA-Seq在未来常规诊断工作流中的最终作用至关重要。
Variant Calling for Herpes Simplex Virus 1 from Patient Sample Using Capture Probe Sequencing
-
The following data-cleaning strategies were applied before variant calling:
* Note that the intrahost results does not contain interhost variants. * Using the two methods (freebayes and spandx for reporting interhost variant), using viral-ngs reporting intrahost variants. * The interhost results is released in the point 4 and the intrahost results released in the step 13. * Merge the two results, delete the items from intrahost variants if it occurs in the interhost tables. * A records in intrahost table in which the frequency in an isolate >= 0.5 while in an other isolate < 0.5 should be in interhost table. If both are >= 0.5, or < 0.5 should be not in the interhost table. * We can roughly check if the correctness of the intrahost variant results with the table from point 18 generated by "~/Scripts/check_sequence_differences.py aligned_1_.aln". * At the end, we should have a interhost variant calling table + a intrahost varicant calling table in which the frequency varies between 0.05 and 0.5. * Another control method: merge the two tables and sort according to the coordinate. Then compare the coordinate with results ~/Scripts/check_sequence_differences.py aligned_1_.aln. They should be similar. * If a record occurs in the table from point 18, not in intrahost+interhost table, meaning the base is wrongly called during the assembly. * The correction of the assembly in the step data/02_assembly and data/03_multialign_to_ref/aligned_1.fasta is actually not very critical, since if a wrongly called base, the intrahost will be a record >= 0.5 frequency. * The error earlier: only report the intrahost variant calling, few interhost variant calling. The interhost variant calling will be found if they the bases in the assembly is wrongly called. * !!!! IMPORTANT: Delete the last position of the alleles if there are three in the alleles in the intrahost Excel-table before releasing !!!! #Report the interhost+intrahost results to Nicole.
- Input BAM File
- The original BAM file (e.g., HSV-Klinik_S2.raw.bam) was used as the initial input.
- BMTagger Depletion
- BMTagger was employed to remove reads matching contaminants, using specified databases. The resulting file (e.g., HSV-Klinik_S2.bmtagger_depleted.bam) is expected to have potential contaminants removed.
- Databases Used:
- metagenomics_contaminants_v3: Contains sequences commonly found as contaminants in metagenomic samples.
- GRCh38_ncRNA-GRCh38_transcripts-HS_rRNA_mitRNA: A comprehensive database of human RNA, including non-coding RNA (ncRNA), transcripts, ribosomal RNA (rRNA), and mitochondrial RNA (mitRNA).
- hg38: A version of the human genome.
- Duplicate Removal
- Duplicates were removed, producing a file (e.g., HSV-Klinik_S2.rmdup.bam) with reduced PCR duplicates, which helps decrease bias in downstream analyses.
- BLASTn Depletion
- After duplicate removal, BLASTn was used to further refine the file by removing remaining non-target reads. The output (e.g., HSV-Klinik_S2.cleaned.bam) should be free of contaminants and duplicates.
- Databases Used (blastDbs):
- hybsel_probe_adapters: Contains sequences for hybrid selection probe adapters and synthetic sequences used in sequencing and library preparation.
- metag_v3.ncRNA.mRNA.mitRNA.consensus: A curated database of consensus sequences, including non-coding RNA, mRNA, and mitochondrial RNA.
-
Taxonomic Filtering
- HSV-1-specific sequences were isolated by filtering with a custom database of 161 complete HSV-1 genomes from GenBank (see the end of this email). The tool last was used (documentation: [https://docs.hpc.qmul.ac.uk/apps/bio/last/]), producing the taxfiltBam file (e.g., HSV-Klinik_S2.taxfilt.bam).
- Assembly with Taxonomically Filtered Reads
-
Precise Mapping
-
Using the aligner novoalign with alignment options -r Random -l 20 -g 40 -x 20 -t 100 -k, I created a file (HSV-Klinik_S2.mapped.bam) containing reads aligned to themselves.
Read Counts for BAM Files: File Read Count HSV1_S1.raw.bam 1,816,139 × 2 HSV1_S1.bmtagger_depleted.bam 1,750,387 × 2 HSV1_S1.rmdup.bam 1,278,873 × 2 HSV1_S1.cleaned.bam 664,544 × 2 HSV1_S1.taxfilt.bam 22,841 × 2 HSV1_S1.mapped.bam 131 × 2 HSV-Klinik_S2.raw.bam 2,709,058 × 2 HSV-Klinik_S2.bmtagger_depleted.bam 1,582,923 × 2 HSV-Klinik_S2.rmdup.bam 595,066 × 2 HSV-Klinik_S2.cleaned.bam 442,841 × 2 HSV-Klinik_S2.taxfilt.bam 400,301 × 2 HSV-Klinik_S2.mapped.bam 80,915 × 2
bin/taxon_filter.py deplete \ inBam=data/00_raw/HSV-Klinik_S2.bam \ revertBam=tmp/01_cleaned/HSV-Klinik_S2.raw.bam \ bmtaggerBam=tmp/01_cleaned/HSV-Klinik_S2.bmtagger_depleted.bam \ rmdupBam=tmp/01_cleaned/HSV-Klinik_S2.rmdup.bam \ blastnBam=data/01_cleaned/HSV-Klinik_S2.cleaned.bam \ bmtaggerDbs=[‘/home/jhuang/REFs/viral_ngs_dbs/bmtagger_dbs_remove/metagenomics_contaminants_v3’, \ ‘/home/jhuang/REFs/viral_ngs_dbs/bmtagger_dbs_remove/GRCh37.68_ncRNA-GRCh37.68_transcripts-HS_rRNA_mitRNA’, \ ‘/home/jhuang/REFs/viral_ngs_dbs/bmtagger_dbs_remove/hg19’] \ blastDbs=[‘/home/jhuang/REFs/viral_ngs_dbs/blast_dbs_remove/hybsel_probe_adapters’, \ ‘/home/jhuang/REFs/viral_ngs_dbs/blast_dbs_remove/metag_v3.ncRNA.mRNA.mitRNA.consensus’] \ srprism_memory=14250 \ chunkSize=1000000 \ clear_tags=False \ tags_to_clear=[‘XT’, ‘X0’, ‘X1’, ‘XA’, ‘AM’, ‘SM’, ‘BQ’, ‘CT’, ‘XN’, ‘OC’, ‘OP’] \ JVMmemory=50g \ threads=120 \ loglevel=INFO \ tmp_dir=/tmp \ tmp_dirKeep=False
inBam Input BAM file. revertBam Output BAM: read markup reverted with Picard. bwaBam Output BAM: depleted of reads with BWA. bmtaggerBam Output BAM: depleted of reads with BMTagger. rmdupBam Output BAM: bmtaggerBam run through M-Vicuna duplicate removal. blastnBam Output BAM: rmdupBam run through another depletion of reads with BLASTN. last876
-
- Input BAM File
-
Using bengal3_ac3 pipeline to get trimmed reads and snippy interhost variants (for virus, it does not work!)
#using the env bengal3_ac3 conda activate bengal3_ac3 mkdir interhost_variants; cd interhost_variants #prepare scritps cp /home/jhuang/Tools/bacto/bacto-0.1.json . cp /home/jhuang/Tools/bacto/cluster.json . cp /home/jhuang/Tools/bacto/Snakefile . ln -s /home/jhuang/Tools/bacto/local . ln -s /home/jhuang/Tools/bacto/db . ln -s /home/jhuang/Tools/bacto/envs . #preparing raw_data mkdir raw_data; cd raw_data ln -s ~/DATA/Data_Nicole_CaptureProbeSequencing/20241028_FS10003086_74_BTR67801-2217/Alignment_Imported_1/20241029_175539/Fastq/HSV1_S1_L001_R1_001.fastq.gz HSV1_S1_R1.fastq.gz ln -s ~/DATA/Data_Nicole_CaptureProbeSequencing/20241028_FS10003086_74_BTR67801-2217/Alignment_Imported_1/20241029_175539/Fastq/HSV1_S1_L001_R2_001.fastq.gz HSV1_S1_R2.fastq.gz ln -s ~/DATA/Data_Nicole_CaptureProbeSequencing/20241028_FS10003086_74_BTR67801-2217/Alignment_Imported_1/20241029_175539/Fastq/HSV-Klinik_S2_L001_R1_001.fastq.gz HSV-Klinik_S2_R1.fastq.gz ln -s ~/DATA/Data_Nicole_CaptureProbeSequencing/20241028_FS10003086_74_BTR67801-2217/Alignment_Imported_1/20241029_175539/Fastq/HSV-Klinik_S2_L001_R2_001.fastq.gz HSV-Klinik_S2_R2.fastq.gz #ln -s ~/DATA/Data_Nicole_CaptureProbeSequencing/20241028_FS10003086_74_BTR67801-2217/Alignment_Imported_1/20241029_175539/Fastq/NTC_S3_L001_R1_001.fastq.gz NTC_S3_R1.fastq.gz #ln -s ~/DATA/Data_Nicole_CaptureProbeSequencing/20241028_FS10003086_74_BTR67801-2217/Alignment_Imported_1/20241029_175539/Fastq/NTC_S3_L001_R2_001.fastq.gz NTC_S3_R2.fastq.gz #preparing bacto-0.1.json. "fastqc": false, "taxonomic_classifier": false, "assembly": false, "typing_ariba": false, "typing_mlst": false, "pangenome": false, "variants_calling": true, "phylogeny_fasttree": true, "phylogeny_raxml": true, "recombination": true, "genus": "Herpesvirus", "kingdom": "Viruses", "species": "human herpesvirus 1", "species": "herpes" "reference": "db/OP297860.gb", (bengal3_ac3) /home/jhuang/miniconda3/envs/snakemake_4_3_1/bin/snakemake --printshellcmds # --DEBUG_1 (Don't need to run the step by changing the configuration!)-- prokka --force --outdir prokka/HSV-Klinik_S2 --cpus 2 --usegenus --genus Herpesvirus --kingdom Viruses --species human herpesvirus 1 --addgenes --addmrna --prefix HSV-Klinik_S2 --locustag HSV-Klinik_S2 shovill/HSV-Klinik_S2/contigs.fa -hmm /media/jhuang/Titisee/GAMOLA2/TIGRfam_db/TIGRFAMs_15.0_HMM.LIB # - using bakta instead due to the error during the prokka-running (bakta doesn't work due to too huge fasta-file) bakta --db /mnt/nvme0n1p1/bakta_db shovill/HSV-Klinik_S2/contigs.fa --prefix HSV-Klinik_S2 --output prokka/HSV-Klinik_S2 --force # ---- running directly freebayes as follows ---- cd data mkdir 02_align_to_OP297860 ../bin/read_utils.py align_and_fix 01_per_sample/HSV1_S1.cleaned.bam ../refsel_db/refsel.fasta --outBamAll 02_align_to_OP297860/HSV1_S1.bam --outBamFiltered 02_align_to_OP297860/HSV1_S1.mapped.bam --aligner novoalign --aligner_options '-r Random -l 20 -g 40 -x 20 -t 100 -k' --threads 120 ../bin/read_utils.py align_and_fix 01_per_sample/HSV-Klinik_S2.cleaned.bam ../refsel_db/refsel.fasta --outBamAll 02_align_to_OP297860/HSV-Klinik_S2.bam --outBamFiltered 02_align_to_OP297860/HSV-Klinik_S2.mapped.bam --aligner novoalign --aligner_options '-r Random -l 20 -g 40 -x 20 -t 100 -k' --threads 120 b samtools sort 02_align_to_OP297860/HSV-Klinik_S2.mapped.bam -o HSV-Klinik_S2_reads_aligned_sorted.bam samtools index HSV-Klinik_S2_reads_aligned_sorted.bam freebayes -f ../ref_genome/reference.fasta -i HSV-Klinik_S2_reads_aligned_sorted.bam --min-coverage 10 --min-alternate-count 3 --vcf freebayes_interhost_out.vcf #CHROM POS ID REF ALT QUAL OP297860.1 8885 . A G 7.37349e-13 OP297860.1 8895 . A G 6.00837e-05 OP297860.1 8956 . A G 339.579 OP297860.1 8991 . ATTGT CCTGC 3188.1 OP297860.1 9616 . C A 4.44801e-14 OP297860.1 12748 . C A 63475.5 #HSV-Klinik_S2-1 13203 A C 0.8466 snp 1.34479 C:1581:1060:1581:1060:1 A:21:15:21:15:1 * OP297860.1 13203 . T C 86820.7 OP297860.1 13755 . G A 107298 OP297860.1 14114 . C A 1.21987e-13 OP297860.1 46861 . T C 710.176 * OP297860.1 47109 . T G 9375.53 OP297860.1 47170 . G T 5942.86 OP297860.1 47182 . G A 6108.66 OP297860.1 47320 . A G 10275.4 OP297860.1 47377 . G T 972.379 OP297860.1 47516 . T C 257.388 OP297860.1 47563 . G A 372.177 OP297860.1 47660 . G A 438.692 OP297860.1 47707 . T C 3252.11 OP297860.1 47722 . A G 5343.39 OP297860.1 48064 . G A 21575.7 OP297860.1 48113 . C T 4284.1 OP297860.1 48129 . T C 1778.66 OP297860.1 48167 . T C 3316.44 OP297860.1 48219 . A C 6892.21 OP297860.1 48398 . C A 5.72805e-16 OP297860.1 53216 . G T 2031 OP297860.1 53298 . A G 465.154 OP297860.1 53423 . C T 5586.37 OP297860.1 54025 . A G 385.75 OP297860.1 54073 . G A 8463.94 OP297860.1 54408 . T G 2923.39 OP297860.1 54568 . G T 1391.08 OP297860.1 54708 . TG GA,TA 840.319 OP297860.1 54769 . G T 1.72979e-14 * OP297860.1 55501 . T C 33158.1 * OP297860.1 55807 . C A 0 OP297860.1 56493 . A G 39336.9 OP297860.1 56867 . C A 7.83521e-14 OP297860.1 57513 . C A 0 OP297860.1 58047 . A T 4.21917e-15 OP297860.1 58054 . C A 0 OP297860.1 58056 . ACCA TCCT 0 OP297860.1 58075 . ACTC GCTT 2947.03 OP297860.1 63377 . C A 0 OP297860.1 63393 . G T 1.39225e-14 OP297860.1 65179 . T C 7903.32 * OP297860.1 65225 . G A 13223.5 * OP297860.1 65402 . C A 1.53811e-13 OP297860.1 65992 . T C 25982.5 OP297860.1 66677 . G A 5.27367e-15 OP297860.1 67131 . C A 225.935 OP297860.1 67336 . G A 8.13698e-15 OP297860.1 94706 . C A 0 OP297860.1 94709 . G T 0 * OP297860.1 94750 . G T 0 OP297860.1 95750 . C A 2.89975e-08 OP297860.1 95990 . C A 0 OP297860.1 96070 . G T 0 OP297860.1 137360 . G T 0 OP297860.1 137373 . C A 0 OP297860.1 137527 . A T 4880.59 OP297860.1 137569 . C T 10142.1 OP297860.1 137602 . C A 19065.3 OP297860.1 137986 . A G 0 OP297860.1 138170 . T C 53588.3 OP297860.1 138343 . C T 7310.38
-
spandx varicant calling (see http://xgenes.com/article/article-content/314/call-and-merge-snp-and-indel-results-from-using-two-variant-calling-methods/)
mkdir ~/miniconda3/envs/spandx/share/snpeff-5.1-2/data/OP297860 #cp OP297860.gb ~/miniconda3/envs/spandx/share/snpeff-5.1-2/data/OP297860/genes.gbk vim ~/miniconda3/envs/spandx/share/snpeff-5.1-2/snpEff.config /home/jhuang/miniconda3/envs/spandx/bin/snpEff build OP297860 -d #Protein check: OP297860 OK: 73 Not found: 0 Errors: 0 Error percentage: 0.0% ## -- try using gffs+fa to install the database, but failed -- #cp OP297860.gff3 ~/miniconda3/envs/spandx/share/snpeff-5.1-2/data/OP297860/genes.gff #cp OP297860.fasta ~/miniconda3/envs/spandx/share/snpeff-5.1-2/data/OP297860//sequences.fa #vim ~/miniconda3/envs/spandx/share/snpeff-5.1-2/snpEff.config ##OP297860.genome : Herpes_Simplex_Virus_1 #snpEff build -v OP297860 #-gff3 #cd /path/to/snpEff/data #mkdir NC_001806 #cp NC_001806.gff3 NC_001806/genes.gff #cp NC_001806.fa NC_001806/sequences.fa ##NC_001806.genome : Herpes_Simplex_Virus_1 ##bcftools reheader -h new_header.vcf HSV-Klinik_S2.PASS.snps.vcf -o updated_vcf.vcf ##table_annovar <input.vcf> <humandb> -buildver <genome_version> -out <output_prefix> -protocol <protocol_list> -operation <operation_list> cd trimmed mv HSV1_S1_trimmed_P_1.fastq HSV1_S1_R1.fastq mv HSV1_S1_trimmed_P_2.fastq HSV1_S1_R2.fastq mv HSV-Klinik_S2_trimmed_P_1.fastq HSV-Klinik_S2_R1.fastq mv HSV-Klinik_S2_trimmed_P_2.fastq HSV-Klinik_S2_R2.fastq gzip *_R1.fastq *_R2.fastq cp ref_genome/reference.fasta OP297860.fasta #Clean the header to only retain the accession-id "OP297860.1" ln -s /home/jhuang/Tools/spandx/ spandx (spandx) nextflow run spandx/main.nf --fastq "trimmed/*_R{1,2}.fastq.gz" --ref OP297860.fasta --annotation --database OP297860 -resume # -- DEBUG: All_SNPs_indels_annotated.txt is not correctly annotated, manually rerun snpeff-4.1l-8 and related steps -- ## OPTION_1: copy the viral-ngs4 database to the spandx database, failed during the version difference -- #cp /home/jhuang/miniconda3/envs/viral-ngs4/share/snpeff-4.1l-8/data/1158c840951524dbd03a1a055a837d3828f6f29af1ec2771219e77c/genes.gbk . ##/home/jhuang/miniconda3/envs/spandx/bin/snpEff build OP297860 -d # OPTION_2: run via interhost.py (SUCCESSFUL!) #repeat the processing in spandx/bin/SNP_matrix.sh to generate All_SNPs_indels_annotated.txt, the snpEff step using we with 'bin/interhost.py snpEff' in the env viral-ngs4 cd work/f8/93141f3ef382d7ac9dd40def9c50ce (last directory sorted by timestamp) #gatk VariantsToTable -V out.vcf -F CHROM -F POS -F REF -F ALT -F TYPE -GF GT -O out.vcf.table.all # ##clean-up the out.vcf.table.all because GATK outputs A/A #sed -i 's#|#/#g' out.vcf.table.all #awk ' { for (i=6; i<=NF; i++) { # if ($i == "A/A") $i="A"; # if ($i == "G/G") $i="G"; # if ($i == "C/C") $i="C"; # if ($i == "T/T") $i="T"; # if ($i == "*/*") $i="*"; # if ($i == "./.") $i="."; # }}; # {print $0} ' out.vcf.table.all > out.vcf.table.all.tmp #awk ' { for (i=6; i<=NF; i++) { # if ($i ~ /\//) { # split($i, a, "/"); # if (a[1] == a[2]) $i=a[1]; # } # } # }; # {print $0} ' out.vcf.table.all.tmp > out.vcf.table.all # Switch the env to viral-ngs4 and manully run snpEff #(viral-ngs4) jhuang@WS-2290C:~/DATA/Data_Nicole_CaptureProbeSequencing/work/ea/6f30cd5eed0efbbf3e3fe1ddfac0df$ snpEff eff -no-downstream -no-intergenic -ud 100 -formatEff -v 1158c840951524dbd03a1a055a837d3828f6f29af1ec2771219e77c out.vcf > out.annotated.vcf ##-debug # Number of chromosomes : 1 # Chromosomes : Format 'chromo_name size codon_table' # 'OP297860' 152526 Standard #vim /home/jhuang/miniconda3/envs/viral-ngs4/share/snpeff-4.1l-8/snpEff.config #1158c840951524dbd03a1a055a837d3828f6f29af1ec2771219e77c.chromosomes : OP297860 # Alternative snpEff calling with "bin/interhost.py snpEff" #(viral-ngs4) jhuang@WS-2290C:~/DATA/Data_Nicole_CaptureProbeSequencing/work/ea/6f30cd5eed0efbbf3e3fe1ddfac0df$ ../../../bin/interhost.py snpEff out.filtered.vcf OP297860.1 out.annotated.vcf j.huang@uke.de --loglevel DEBUG #remove headers from annotated vcf and out.vcf grep -v '#' out.annotated.vcf > out.annotated.vcf.headerless #grep -v '#' out.vcf > out.vcf.headerless awk '{ if (match($0,"EFF=")){print substr($0,RSTART)} else print "" }' out.annotated.vcf.headerless > effects sed -i 's/EFF=//' effects sed -i 's/(/ /g' effects sed -i 's/|/ /g' effects sed -i 's/UPSTREAM MODIFIER /UPSTREAM MODIFIER - /g' effects cut -d " " -f -8 effects > effects.mrg sed -i 's/ /\t/g' effects.mrg rm effects tail -n+2 out.vcf.table.all > out.vcf.table.all.headerless sed -i 's/ /\t/g' out.vcf.table.all.headerless paste out.vcf.table.all.headerless effects.mrg > out.vcf.headerless.plus.effects head -n1 out.vcf.table.all | sed 's/.GT//g' > header.left echo -e "Effect\tImpact\tFunctional_Class\tCodon_change\tProtein_and_nucleotide_change\tAmino_Acid_Length\tGene_name\tBiotype" > header.right paste header.left header.right > header cat header out.vcf.headerless.plus.effects > All_SNPs_indels_annotated.txt echo "SPANDx has finished" cp All_SNPs_indels_annotated.txt ../../../Outputs/Phylogeny_and_annotation/
-
merge the two variant calling
#Output: interhost_variants/snippy/summary_snps_indels.csv python3 ~/Scripts/summarize_snippy_res.py interhost_variants/snippy #Note that although the ALT bases are wrong, but we only need the positions. We can use the results for downstream processing! #Sort summary_snps_indels.csv according to the coordinate positions. #merge the following two files summary_snps_indels.csv (70) and All_SNPs_indels_annotated.txt (819) --> merged_variants.csv (69) python3 ~/Scripts/merge_snps_indels.py interhost_variants/snippy/summary_snps_indels.csv Outputs/Phylogeny_and_annotation/All_SNPs_indels_annotated.txt merged_variants.csv #check if the number of the output file is correct? comm -12 <(cut -d, -f2 interhost_variants/snippy/summary_snps_indels.csv | sort | uniq) <(cut -f2 Outputs/Phylogeny_and_annotation/All_SNPs_indels_annotated.txt | sort | uniq) | wc -l comm -12 <(cut -d, -f2 interhost_variants/snippy/summary_snps_indels.csv | sort | uniq) <(cut -f2 Outputs/Phylogeny_and_annotation/All_SNPs_indels_annotated.txt | sort | uniq) #The only difference is 58615 #Manually check the final results and delete some strange results and save merged_variants.csv as variants.xlsx #sort interhost_index -u > interhost_index_sorted #sort intrahost_index -u > intrahost_index_sorted #comm interhost_index_sorted intrahost_index_sorted # !!!! Manually checking intrahost records, if one record in a sample-group > 0.5, it should be a record interhost, look for if the records in the spandx-result. If the record is there, copy it to the interhost variant sheet! The records in all records of intrahost variants should be always < 0.5, if a record is > 0.5, if should be in interhost variants. Delete all records from intrahost variants when a record > 0.5 and it is not occuring in All_SNPs_indels_annotated.txt !!!! Ausnahme ist the record such as 65225: #OP297860 65225 G A SNP G G/A intragenic_variant MODIFIER n.65225G>A UL30 #OP297860 65225 HSV1_S1 HSV1_S1 G,A 0 intragenic_variant n.65225G>A UL30 Gene_63070_67475 #OP297860 65225 HSV-Klinik_S2 HSV-Klinik_S2 G,A 0.891530460624071 intragenic_variant n.65225G>A UL30 Gene_63070_67475 ##improve the header #sed -i '1s/_trimmed_P//g' merged_variants.csv ##check the REF and K1 have the same base and delete those records with difference. #cut -f3 -d',' merged_variants.csv > f3 #cut -f6 -d',' merged_variants.csv > f6 #diff f3 f6 #awk -F, '$3 == $6 || NR==1' merged_variants.csv > filtered_merged_variants.csv #(93) #cut -f3 -d',' filtered_merged_variants.csv > f3 #cut -f6 -d',' filtered_merged_variants.csv > f6 #diff f3 f6 ##MANUALLY REMOVE the column f6 in filtered_merged_variants.csv, and rename CHROM to HDRNA_01_K01 in the header, summarize chr and plasmids SNPs of a sample together to a single list, save as an Excel-file.
-
(Optional, the step is currently only for intrahost variant calling) Filtering low complexity
fastp -i HSV1_S1_trimmed_P_1.fastq -I HSV1_S1_trimmed_P_2.fastq -o HSV1_S1_trimmed_R1.fastq -O HSV1_S1_trimmed_R2.fastq --low_complexity_filter --complexity_threshold 30 fastp -i HSV-Klinik_S2_trimmed_P_1.fastq -I HSV-Klinik_S2_trimmed_P_2.fastq -o HSV-Klinik_S2_trimmed_R1.fastq -O HSV-Klinik_S2_trimmed_R2.fastq --low_complexity_filter --complexity_threshold 30 Read1 before filtering: total reads: 1755209 total bases: 163663141 Q20 bases: 162306612(99.1711%) Q30 bases: 159234526(97.2941%) Read2 before filtering: total reads: 1755209 total bases: 163045950 Q20 bases: 161178082(98.8544%) Q30 bases: 157052184(96.3239%) Read1 after filtering: total reads: 1733241 total bases: 161547828 Q20 bases: 160217907(99.1768%) Q30 bases: 157196236(97.3063%) Read2 aftering filtering: total reads: 1733241 total bases: 160825521 Q20 bases: 159057902(98.9009%) Q30 bases: 155354052(96.5979%) Filtering result: reads passed filter: 3466482 reads failed due to low quality: 550 reads failed due to too many N: 0 reads failed due to too short: 0 reads failed due to low complexity: 43386 reads with adapter trimmed: 21424 bases trimmed due to adapters: 159261 Duplication rate: 14.2379% Insert size peak (evaluated by paired-end reads): 41 JSON report: fastp.json HTML report: fastp.html fastp -i HSV1_S1_trimmed_P_1.fastq -I HSV1_S1_trimmed_P_2.fastq -o HSV1_S1_trimmed_R1.fastq -O HSV1_S1_trimmed_R2.fastq --low_complexity_filter --complexity_threshold 30 fastp v0.20.1, time used: 7 seconds Read1 before filtering: total reads: 2688264 total bases: 330035144 Q20 bases: 326999269(99.0801%) Q30 bases: 320136918(97.0009%) Read2 before filtering: total reads: 2688264 total bases: 327364405 Q20 bases: 323331005(98.7679%) Q30 bases: 314500076(96.0703%) Read1 after filtering: total reads: 2660598 total bases: 326564634 Q20 bases: 323572956(99.0839%) Q30 bases: 316783667(97.0049%) Read2 aftering filtering: total reads: 2660598 total bases: 324709841 Q20 bases: 320840657(98.8084%) Q30 bases: 312570288(96.2614%) Filtering result: reads passed filter: 5321196 reads failed due to low quality: 1110 reads failed due to too many N: 0 reads failed due to too short: 0 reads failed due to low complexity: 54222 reads with adapter trimmed: 39080 bases trimmed due to adapters: 357915 Duplication rate: 9.91821% Insert size peak (evaluated by paired-end reads): 96 JSON report: fastp.json HTML report: fastp.html fastp -i HSV-Klinik_S2_trimmed_P_1.fastq -I HSV-Klinik_S2_trimmed_P_2.fastq -o HSV-Klinik_S2_trimmed_R1.fastq -O HSV-Klinik_S2_trimmed_R2.fastq --low_complexity_filter --complexity_threshold 30 fastp v0.20.1, time used: 15 seconds
-
Using vrap to assembly and annotate the contigs, the spades-step was replaced with idba of DAMIAN; DAMIAN’s host-removal steps can also as the confirmation steps for viral-ngs.
# Starting data: ln -s interhost_variants/trimmed . ln -s ~/Tools/vrap/ . #CHANGE the txid10298 in download_db.py: txid10298[Organism] AND complete genome[Title] gzip trimmed/*_R1.fastq trimmed/*_R2.fastq mv trimmed/*.gz ./ #--host /home/jhuang/REFs/genome.fa --nt=/mnt/nvme0n1p1/blast/nt --nr=/mnt/nvme0n1p1/blast/nr vrap/vrap.py -1 trimmed/HSV1_S1_R1.fastq.gz -2 trimmed/HSV1_S1_R2.fastq.gz -o HSV1_S1_vrap_out_v3 --bt2idx=/home/jhuang/REFs/genome -t 100 -l 200 -g vrap/vrap.py -1 trimmed/HSV-Klinik_S2_R1.fastq.gz -2 trimmed/HSV-Klinik_S2_R2.fastq.gz -o HSV-Klinik_S2_vrap_out_v3 --bt2idx=/home/jhuang/REFs/genome -t 100 -l 200 -g #--> If ERROR in spades-assembly, we usding idba from DAMIAN assembly, copy the assembly to spades. Then rerun vrap.py above! # * 4 nt_dbs (--virus, --host, download_db.py(nucleotide), nt), 2 prot_db (download_db.py(protein), nr) for blast, save under ./blast/db/virus, ./blast/db/host, vrap/database/viral_db/viral_nucleotide, vrap/database/viral_db/viral_protein # * 1 bowtie_database for host removal (--host), save under ./bowtie/host. # * bowtie run before assembly # * blast run after assembly for the contigs, therefore it does not exist the taxfilt step in vrap. # * checking the order of the databases for annotation step, namely which database will be taken firstly for annotionn after setting --virus? # * If --host is for both bowtie and blastn, if only --bt2idx define, only bowtie, no blastn! --> commented --host=/home/jhuang/REFs/genome.fa still has the host-removal step! # * "--virus=vrap/database/viral_db/nucleotide.fa" don't need give, since it is already defined in ./blast/db/virus # * the process: lighter (fast, memory-efficient tool for correcting sequencing errors) --> flash (tool to find the correct overlap between paired-end reads and extend the reads by stitching them together) --> bowtie (delete the host reads) --> spades --> cap3 (CAP3: A DNA sequence assembly program and it has a capability to clip 5' and 3' low-quality regions of reads) --> calculating orf density --> hmmer --> blast # Download all virus genomes mv datasets /usr/local/bin/ chmod +x /usr/local/bin/datasets #datasets download virus genome --complete-only --assembly-source refseq datasets download virus genome taxon "Viruses" --complete-only --refseq #To check for RefSeq data only, look for NC_, NM_, or similar prefixes in sequence headers and identifiers. wget -r -np -nH --cut-dirs=3 ftp://ftp.ncbi.nlm.nih.gov/genomes/Viruses/ # The commends for more comprehensive blast annotation vrap/vrap.py -1 trimmed/HSV1_S1_R1.fastq.gz -2 trimmed/HSV1_S1_R2.fastq.gz -o HSV1_S1_vrap_out_v4 --bt2idx=/home/jhuang/REFs/genome --host=/home/jhuang/REFs/genome.fa --virus=/home/jhuang/DATA/Data_Nicole_CaptureProbeSequencing/vrap/database/ncbi_dataset/data/genomic.fna --nt=/mnt/nvme0n1p1/blast/nt --nr=/mnt/nvme0n1p1/blast/nr -t 100 -l 200 -g vrap/vrap.py -1 trimmed/HSV-Klinik_S2_R1.fastq.gz -2 trimmed/HSV-Klinik_S2_R2.fastq.gz -o HSV-Klinik_S2_vrap_out_v4 --bt2idx=/home/jhuang/REFs/genome --host=/home/jhuang/REFs/genome.fa --virus=/home/jhuang/DATA/Data_Nicole_CaptureProbeSequencing/vrap/database/ncbi_dataset/data/genomic.fna --nt=/mnt/nvme0n1p1/blast/nt --nr=/mnt/nvme0n1p1/blast/nr -t 100 -l 200 -g #END #using the bowtie of vrap to map the reads on ref_genome/reference.fasta vrap/vrap.py -1 trimmed/HSV1_S1_R1.fastq.gz -2 trimmed/HSV1_S1_R2.fastq.gz -o HSV1_S1_vrap_out_v5 --host ref_genome/reference.fasta -t 100 -l 200 -g vrap/vrap.py -1 trimmed/HSV-Klinik_S2_R1.fastq.gz -2 trimmed/HSV-Klinik_S2_R2.fastq.gz -o HSV-Klinik_S2_vrap_out_v5 --host ref_genome/reference.fasta -t 100 -l 200 -g cd bowtie mv mapped mapped.sam samtools view -S -b mapped.sam > mapped.bam samtools sort mapped.bam -o mapped_sorted.bam samtools index mapped_sorted.bam samtools view -H mapped_sorted.bam samtools flagstat mapped_sorted.bam #106435 + 0 mapped (3.11% : N/A) #106435 + 0 primary mapped (3.11% : N/A) #8204 + 0 properly paired (0.26% : N/A) #63742 + 0 with itself and mate mapped 8204+63742 #1144448 + 0 mapped (26.25% : N/A) #1144448 + 0 primary mapped (26.25% : N/A) #124068 + 0 properly paired (3.76% : N/A) #581256 + 0 with itself and mate mapped 124068+581256 bamCoverage -b mapped_sorted.bam -o ../../HSV1_S1_reads_coverage2.bw bamCoverage -b mapped_sorted.bam -o ../../HSV-Klinik_S2_reads_coverage2.bw #Command line spades: /home/jhuang/miniconda3/envs/vrap/bin/spades.py -1 /mnt/md1/DATA_md1/Data_Nicole_CaptureProbeSequencing/HSV-Klinik_S2_vrap_out_v3/bowtie/bowtie.un.1.fastq -2 /mnt/md1/DATA_md1/Data_Nicole_CaptureProbeSequencing/HSV-Klinik_S2_vrap_out_v3/bowtie/bowtie.un.2.fastq --s1 /mnt/md1/DATA_md1/Data_Nicole_CaptureProbeSequencing/HSV-Klinik_S2_vrap_out_v3/bowtie/bowtie.un.fastq -k 33,55,77,99,127 --cov-cutoff off --only-assembler --careful -t 100 -o /mnt/md1/DATA_md1/Data_Nicole_CaptureProbeSequencing/HSV-Klinik_S2_vrap_out_v3/spades #Command line cap3: /home/jhuang/Tools/vrap/external_tools/cap3 /mnt/md1/DATA_md1/Data_Nicole_CaptureProbeSequencing/HSV-Klinik_S2_vrap_out_v3/spades/contigs.fasta -y 100 damian.rb --host human3 --type dna -1 /home/jhuang/DATA/Data_Nicole_CaptureProbeSequencing/HSV1_S1_trimmed_R1.fastq.gz -2 /home/jhuang/DATA/Data_Nicole_CaptureProbeSequencing/HSV1_S1_trimmed_R2.fastq.gz --sample HSV1_S1_megablast --blastn never --blastp never --min_contiglength 100 --threads 56 --force damian.rb --host human3 --type dna -1 /home/jhuang/DATA/Data_Nicole_CaptureProbeSequencing/HSV-Klinik_S2_trimmed_R1.fastq.gz -2 /home/jhuang/DATA/Data_Nicole_CaptureProbeSequencing/HSV-Klinik_S2_trimmed_R2.fastq.gz --sample HSV-Klinik_S2_megablast --blastn never --blastp never --min_contiglength 100 --threads 56 --force [16:42:55 2024-11-12] Removing adapter and host sequences Trimming readpair 1: /home/jhuang/DATA/Data_Nicole_CaptureProbeSequencing/trimmed/HSV1_S1_R1.fastq.gz and /home/jhuang/DATA/Data_Nicole_CaptureProbeSequencing/trimmed/HSV1_S1_R2.fastq.gz Host reads: 11.71% Fragment size: 212 (sd:64) Subtracting host: human3 (Homo_sapiens_UCSC_hg38 (dna)) Alignment rate: 0.52% Subtracting host: human3 (Homo sapiens (cdna)) Alignment rate: 0.02% Subtracting host: human3 (Homo sapiens (ncrna)) Alignment rate: 0.01% [17:20:31 2024-11-12] Removing adapter and host sequences Trimming readpair 1: /home/jhuang/DATA/Data_Nicole_CaptureProbeSequencing/trimmed/HSV-Klinik_S2_R1.fastq.gz and /home/jhuang/DATA/Data_Nicole_CaptureProbeSequencing/trimmed/HSV-Klinik_S2_R2.fastq.gz Host reads: 44.47% Fragment size: 236 (sd:77) Subtracting host: human3 (Homo_sapiens_UCSC_hg38 (dna)) Alignment rate: 29.34% Subtracting host: human3 (Homo sapiens (cdna)) Alignment rate: 0.66% Subtracting host: human3 (Homo sapiens (ncrna)) Alignment rate: 0.64% [17:25:27 2024-11-12] Assembling [17:38:39 2024-11-12] Parsing assembly Large contigs (500bp and longer): 259 Large orfs (75bp and longer): 843 [17:38:58 2024-11-12] Seeking protein domains Contigs with domains: 162 [17:40:36 2024-11-12] Annotating contigs cp ~/rtpd_files/HSV1_S1_megablast/idba_ud_assembly/contig.fa contigs.fasta cp ~/rtpd_files/HSV-Klinik_S2_megablast/idba_ud_assembly/contig.fa contigs.fasta #RERUN vrap/vrap.py again with the replaced contigs.fasta! #vrap/vrap.py -1 Affe30_trimmed_R1.fastq.gz -2 Affe30_trimmed_R2.fastq.gz -o Affe30_trimmed_vrap_out -t 40 -l 100 #vrap/vrap.py -1 Affe31_trimmed_R1.fastq.gz -2 Affe31_trimmed_R2.fastq.gz -o Affe31_trimmed_vrap_out -t 40 -l 100 # -- DEBUG_1 -- #DO NOT use '-l 100' in command line #name 'generic_dna' is not defined mamba install biopython=1.77 python=3.9 #for supporting "generic_dna" # SET all records from vrap/database/viral_db/nucleotide.fa as lastal.acids, choose the most occurred in vrap_out as refsel.acids and the record for accessions_for_ref_genome_build in config.yaml. # Query coverage Query sequence name Query length ORF density Percentage identity Subject sequence length Subject accession Subject name E-value grep "Human alphaherpesvirus 1" HSV-Klinik_S2_contigs_summary.csv > HSV-Klinik_S2_contigs_summary_.csv #--> ON960057.1 name: The name or identifier of the query sequence. This is typically the header from the input sequence file, such as a FASTA file. qleng: Query length, or the total length of the input sequence (in nucleotides or amino acids, depending on the input type). orf_d: ORF (Open Reading Frame) direction. This indicates the strand or frame in which the ORF was found, often shown as + for the forward direction or - for the reverse direction. hmmer_eval: The E-value from the HMMER (Hidden Markov Model) search. This represents the statistical significance of the match between the identified ORF and the reference HMM model. Lower values indicate more significant matches. hmm_model: The name of the HMM (Hidden Markov Model) profile matched by the ORF. This typically corresponds to a specific viral or protein family model from an HMM database, such as Pfam or custom models used by VRAP. ident: Percentage identity between the query sequence and the target model or database entry. This measures the similarity of the ORF to the matched model. qcov: Query coverage, or the percentage of the query sequence that aligns to the target model. This indicates how much of the ORF sequence aligns with the HMM profile. tcov: Target coverage, or the percentage of the target HMM profile that aligns with the query. This helps assess how well the ORF represents the entire HMM model. tlength: Target length, or the length of the HMM model sequence in the database. This value can be used to understand how much of the target model was covered by the ORF alignment. tid: Target identifier, often an accession or ID number for the matched HMM model. This is used to uniquely identify the model within the HMM database. tname: Target name or description, which provides more information about the HMM model or protein family that the ORF matches. mean_eval: Mean E-value for the HMMER match, averaged over multiple potential alignments (if any). Lower values imply higher significance, with the mean providing an aggregate metric if there were multiple HMM matches. #reads_and_contigs_on_JX878414.png #using the assembly for the calling! #TODO_TOMORROW: In the final results only mark the SNPs in the contigs > 500 nt (shown as in the figure), otherwise we have too much results! then merge snps (now there is an ERROR during merging!)
-
Analyses using viral-ngs
conda activate viral3 #conda install -c anaconda openjdk=8 ln -s ~/Tools/viral-ngs/Snakefile Snakefile ln -s ~/Tools/viral-ngs/bin bin cp ~/Tools/viral-ngs/refsel.acids refsel.acids cp ~/Tools/viral-ngs/lastal.acids lastal.acids cp ~/Tools/viral-ngs/config.yaml config.yaml cp ~/Tools/viral-ngs/samples-runs.txt samples-runs.txt cp ~/Tools/viral-ngs/samples-depletion.txt samples-depletion.txt cp ~/Tools/viral-ngs/samples-metagenomics.txt samples-metagenomics.txt cp ~/Tools/viral-ngs/samples-assembly.txt samples-assembly.txt cp ~/Tools/viral-ngs/samples-assembly-failures.txt samples-assembly-failures.txt mkdir data cd data mkdir 00_raw cd ../..
-
Prepare lastal.acids, refsel.acids and accessions_for_ref_genome_build in config.yaml
#Herpes simplex virus 1 (HSV-1) and Human alphaherpesvirus 1 (also known as Simplexvirus humanalpha1) are indeed the same virus. #The different names result from varied naming conventions: # * Herpes simplex virus 1 (HSV-1) is the common name, often used in clinical and general contexts. # * Human alphaherpesvirus 1 is the official taxonomic name, as defined by the International Committee on Taxonomy of Viruses (ICTV). This name is used in scientific classifications and databases like NCBI to specify its place in the Herpesviridae family under the Alphaherpesvirinae subfamily. #In some databases or references, it might also appear under Simplexvirus humanalpha1, which refers to its taxonomic classification at the genus level (Simplexvirus) and species level (Human alphaherpesvirus 1). However, all these terms refer to the same virus, commonly known as HSV-1. #https://www.uniprot.org/taxonomy?query=Human+herpesvirus #https://www.uniprot.org/taxonomy/3050292 esearch -db nuccore -query "txid3050292[Organism]" | efetch -format fasta > taxon_3050292_sequences.fasta esearch -db nuccore -query "txid3050292[Organism]" | efetch -format acc > taxon_3050292_accessions.txt esearch -db nuccore -query "txid10298[Organism] AND complete genome[Title]" | efetch -format fasta > taxon_3050292_complete_genomes.fasta esearch -db nuccore -query "txid10298[Organism] AND complete genome[Title]" | efetch -format acc > taxon_10298_complete_genomes.acc # 161 genomes mv taxon_10298_complete_genomes.acc lastal.acids https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=10298 Human alphaherpesvirus 1 (Herpes simplex virus type 1) Click on organism name to get more information. Human alphaherpesvirus 1 strain 17 Human alphaherpesvirus 1 strain A44 Human alphaherpesvirus 1 strain Angelotti Human alphaherpesvirus 1 strain CL101 Human alphaherpesvirus 1 strain CVG-2 Human alphaherpesvirus 1 strain F Human alphaherpesvirus 1 strain H129 Human alphaherpesvirus 1 strain HFEM Human alphaherpesvirus 1 strain HZT Human alphaherpesvirus 1 strain KOS Human alphaherpesvirus 1 strain MGH-10 Human alphaherpesvirus 1 strain MP Human alphaherpesvirus 1 strain Patton Human alphaherpesvirus 1 strain R-15 Human alphaherpesvirus 1 strain R19 Human alphaherpesvirus 1 strain RH2 Human alphaherpesvirus 1 strain SC16
-
Trimming using trimmomatic
# Starting data: ln -s interhost_variants/raw_data . mkdir bams for sample in HSV1_S1 HSV-Klinik_S2 NTC_S3; do for sample in HSV1_S1; do java -jar /home/jhuang/Tools/Trimmomatic-0.36/trimmomatic-0.36.jar PE -threads 16 ./raw_data/${sample}_R1.fastq.gz ./raw_data/${sample}_R2.fastq.gz trimmed/${sample}_R1.fastq.gz trimmed/${sample}_unpaired_R1.fastq.gz trimmed/${sample}_R2.fastq.gz trimmed/${sample}_unpaired_R2.fastq.gz ILLUMINACLIP:/home/jhuang/Tools/Trimmomatic-0.36/adapters/TruSeq3-PE-2.fa:2:30:10:8:TRUE LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36 AVGQUAL:20; \ done
-
Mapping
cd trimmed seqtk sample -s100 HSV1_S1_R1.fastq.gz 0.1 > HSV1_S1_sampled_R1.fastq seqtk sample -s100 HSV1_S1_R2.fastq.gz 0.1 > HSV1_S1_sampled_R2.fastq gzip HSV1_S1_sampled_R1.fastq HSV1_S1_sampled_R2.fastq ref_fa="NC_001806.fasta"; for sample in HSV1_S1 HSV-Klinik_S2 NTC_S3; do for sample in HSV1_S1; do for sample in HSV1_S1_sampled; do bwa index ${ref_fa}; \ bwa mem -M -t 16 ${ref_fa} trimmed/${sample}_R1.fastq.gz trimmed/${sample}_R2.fastq.gz | samtools view -bS - > bams/${sample}_genome_alignment.bam; \ #for table filling using the following commands! -->3000000 \ #bwa mem -M -t 14 ${ref_fa} ${sample}_R1.fastq.gz ${sample}_R2.fastq.gz | samtools view -bS -F 256 - > bams/${sample}_uniqmap.bam; \ done
-
AddOrReplaceReadGroup is IMPORTANT step, otherwise the step viral_ngs cannot run correctly
for sample in HSV1_S1 HSV-Klinik_S2 NTC_S3; do for sample in HSV1_S1; do for sample in HSV1_S1_sampled; do picard AddOrReplaceReadGroups I=bams/${sample}_genome_alignment.bam O=data/00_raw/${sample}.bam SORT_ORDER=coordinate CREATE_INDEX=true RGPL=illumina RGID=$sample RGSM=$sample RGLB=standard RGPU=$sample VALIDATION_STRINGENCY=LENIENT; \ done
-
Configure the viral-ngs conda environment
conda config --add channels r conda config --add channels defaults conda config --add channels conda-forge conda config --add channels bioconda conda config --add channels broad-viral # -- Works not correctly -- #conda list --export > environment2.yml #mamba create --name viral-ngs4 --file environment2.yml mamba env remove -n viral-ngs4 mamba create -n viral-ngs4 python=3.6 blast=2.6.0 bmtagger biopython pysam pyyaml picard mvicuna pybedtools fastqc matplotlib spades last=876 -c conda-forge -c bioconda conda activate viral-ngs4 mamba create -n viral-ngs4 python=3.6 conda activate viral-ngs4 #vim requirements-conda.txt mamba install blast=2.6.0 bmtagger biopython pysam pyyaml picard mvicuna pybedtools fastqc matplotlib spades last=876 -c conda-forge -c bioconda # -- Eventually DEBUG -- #mamba remove picard #mamba clean --packages #mamba install -c bioconda picard ##mamba install libgfortran=5 sqlite=3.46.0 ##mamba install picard --clobber ##mamba create -n viral-ngs-fresh -c bioconda -c conda-forge picard python=3.6 sqlite=3.46.0 libgfortran=5 mamba install cd-hit cd-hit-auxtools diamond gap2seq=2.1 mafft=7.221 mummer4 muscle=3.8 parallel pigz prinseq samtools=1.6 tbl2asn trimmomatic trinity unzip vphaser2 bedtools -c r -c defaults -c conda-forge -c bioconda #-c broad-viral mamba install snpeff=4.1l mamba install gatk=3.6 mamba install bwa #IMPORTANT_REPLACE "sudo cp /home/jhuang/miniconda3/envs/viral-ngs4/bin/gatk3 /usr/local/bin/gatk" #IMPORTANT_UPDATE jar_file in the file with "/home/jhuang/Tools/GenomeAnalysisTK-3.6/GenomeAnalysisTK.jar" #IMPORTANT_SET /home/jhuang/Tools/GenomeAnalysisTK-3.6 as GATK_PATH in config.yaml #IMPORTANT_CHECK if it works # java -jar /home/jhuang/Tools/GenomeAnalysisTK-3.6/GenomeAnalysisTK.jar -T RealignerTargetCreator --help # /usr/local/bin/gatk -T RealignerTargetCreator --help #IMPORTANT_NOTE that the env viral-ngs4 cannot logined from the base env due to the python3-conflict! mamba install vphaser2=2.0 # -- NO ERROR --> INSTALL END HERE -- # -- DEBUG: ClobberError: This transaction has incompatible packages due to a shared path. -- # SafetyError: The package for snpeff located at /home/jhuang/miniconda3/pkgs/snpeff-4.1l-hdfd78af_8 # appears to be corrupted. The path 'share/snpeff-4.1l-8/snpEff.config' # has an incorrect size. # reported size: 9460047 bytes # actual size: 9460357 bytes # # ClobberError: This transaction has incompatible packages due to a shared path. # packages: bioconda/linux-64::bowtie2-2.5.4-h7071971_4, bioconda/linux-64::bowtie-1.3.1-py36h769816f_3 # path: 'bin/scripts/convert_quals.pl' # sovle confilict between bowtie, bowtie2 and snpeff mamba remove bowtie mamba install bowtie2 mamba remove snpeff mamba install snpeff=4.1l # -- WITH ERROR caused by bowtie and snpeff --> INSTALL END HERE -- #mamba install -c bioconda viral-ngs #so that gatk3-register and novoalign-license-register available --> ERROR #Due to license restrictions, the viral-ngs conda package cannot distribute and install GATK directly. To fully install GATK, you must download a licensed copy of GATK v3.8 from the Broad Institute, and call “gatk3-register,” which will copy GATK into your viral-ngs conda environment: mkdir -p /path/to/gatk_dir wget -O - 'https://software.broadinstitute.org/gatk/download/auth?package=GATK-archive&version=3.6-0-g89b7209' | tar -xjvC /path/to/gatk_dir gatk3-register /path/to/gatk_dir/GenomeAnalysisTK.jar #The single-threaded version of Novoalign is installed by default. If you have a license for Novoalign to enable multi-threaded operation, viral-ngs will copy it to the viral-ngs conda environment if the NOVOALIGN_LICENSE_PATH environment variable is set. Alternatively, the conda version of Novoalign can be overridden if the NOVOALIGN_PATH environment variable is set. If you obtain a Novoalign license after viral-ngs has already been installed, it can be added to the conda environment by calling: # obtain a Novoalign license file: novoalign.lic novoalign-license-register /path/to/novoalign.lic # # --We don't have registers, so we have to manually install novoalign and gatk-- # #At first install novoalign, then samtools # mamba remove samtools # mamba install -c bioconda novoalign # Eventually not necessary, since the path is defined in config.yaml NOVOALIGN_PATH: "/home/jhuang/Tools/novocraft_v3", and novoalign.lic is also in the same path. # mamba install -c bioconda samtools # # mamba install -c bioconda gatk #(3.8) #IN /usr/local/bin/gatk FROM /home/jhuang/Tools/SPANDx_v3.2/GenomeAnalysisTK.jar # #UPDATED TO: '/home/jhuang/Tools/GenomeAnalysisTK-3.6/GenomeAnalysisTK.jar' # # If necessary, clean up the conda cache. This will remove any partially installed or corrupted packages. # conda clean --all ## reinstall samtools 1.6 --> NOT RELEVANT #mamba install samtools=1.6
-
Run snakemake
#Set values in samples-*.txt before running viral-ngs rm -rf ref_genome refsel_db lastal_db mv data data_v1; mv tmp tmp_v1; mkdir data tmp mv data_v1/00_raw data snakemake --printshellcmds --cores 10 #Manully remove the records in the intrahost-results when it occurs in the interhost-tables as save the final intrahost-results as a Excel-Sheet in the variants.xlsx. /usr/local/bin/gatk https://software.broadinstitute.org/gatk/documentation/tooldocs/org_broadinstitute_gatk_tools_walkers_indels_RealignerTargetCreator.php java -jar ~/Tools/GenomeAnalysisTK-3.8/GenomeAnalysisTK.jar -T RealignerTargetCreator --help #--> CORRECT java -jar ~/Tools/GenomeAnalysisTK-3.6/GenomeAnalysisTK.jar -T RealignerTargetCreator --help #--> CORRECT /usr/local/bin/gatk -T RealignerTargetCreator --help https://www.broadinstitute.org/gatk/guide/tooldocs/org_broadinstitute_gatk_tools_walkers_indels_RealignerTargetCreator.php Djava.io.tmpdir=/tmp/tmp-assembly-refine_assembly-2d9z3pcr java -jar ~/Tools/GenomeAnalysisTK-2.8-1/GenomeAnalysisTK.jar -T RealignerTargetCreator -I /tmp/tmp-assembly-refine_assembly-2d9z3pcr/tmp0_vh27ji.rmdup.bam -R /tmp/tmp-assembly-refine_assembly-2d9z3pcr/tmppwwyriob.deambig.fasta -o /tmp/tmp-assembly-refine_assembly-2d9z3pcr/tmp_o2f2e0o.intervals --num_threads 120 java -jar ~/Tools/GenomeAnalysisTK-3.8/GenomeAnalysisTK.jar -T RealignerTargetCreator -I /tmp/tmp-assembly-refine_assembly-2d9z3pcr/tmp0_vh27ji.rmdup.bam -R /tmp/tmp-assembly-refine_assembly-2d9z3pcr/tmppwwyriob.deambig.fasta -o /tmp/tmp-assembly-refine_assembly-2d9z3pcr/tmp_o2f2e0o.intervals --num_threads 120 ~/Tools/GenomeAnalysisTK-4.1.2.0/gatk -T RealignerTargetCreator -I /tmp/tmp-assembly-refine_assembly-2d9z3pcr/tmp0_vh27ji.rmdup.bam -R /tmp/tmp-assembly-refine_assembly-2d9z3pcr/tmppwwyriob.deambig.fasta -o /tmp/tmp-assembly-refine_assembly-2d9z3pcr/tmp_o2f2e0o.intervals --num_threads 120 # -- DEBUG_1: Configure the Conda Environment to Use Host's Java (version 17) while keeping BLAST 2.6.0+ -- bin/taxon_filter.py deplete data/00_raw/HSV1_S1.bam tmp/01_cleaned/HSV1_S1.raw.bam tmp/01_cleaned/HSV1_S1.bmtagger_depleted.bam tmp/01_cleaned/HSV1_S1.rmdup.bam data/01_cleaned/HSV1_S1.cleaned.bam --bmtaggerDbs /home/jhuang/REFs/viral_ngs_dbs/bmtagger_dbs_remove/metagenomics_contaminants_v3 /home/jhuang/REFs/viral_ngs_dbs/bmtagger_dbs_remove/GRCh37.68_ncRNA-GRCh37.68_transcripts-HS_rRNA_mitRNA /home/jhuang/REFs/viral_ngs_dbs/bmtagger_dbs_remove/hg19 --blastDbs /home/jhuang/REFs/viral_ngs_dbs/blast_dbs_remove/metag_v3.ncRNA.mRNA.mitRNA.consensus /home/jhuang/REFs/viral_ngs_dbs/blast_dbs_remove/hybsel_probe_adapters --threads 120 --srprismMemory 142500000 --JVMmemory 256g --loglevel DEBUG #2024-11-06 15:55:01,162 - __init__:444:_attempt_install - DEBUG - Currently installed version of blast: 2.16.0-hc155240_2 #2024-11-06 15:55:01,162 - __init__:448:_attempt_install - DEBUG - Expected version of blast: 2.6.0 #2024-11-06 15:55:01,162 - __init__:449:_attempt_install - DEBUG - Incorrect version of blast installed. Removing it... # + (blast 2.6.0 needs java 17, therefore java="/usr/lib/jvm/java-17-openjdk-amd64/bin/java" in /home/jhuang/miniconda3/envs/viral-ngs2/bin/picard) blast 2.6.0 boost1.64_2 bioconda Cached # + (bmtagger 3.101 needs blast 2.6.0) blast=2.6.0 + bmtagger 3.101 h470a237_4 bioconda Cached # + pango 1.50.7 hbd2fdc8_0 conda-forge Cached # + openjdk 11.0.15 hc6918da_0 conda-forge Cached # + r-base 4.2.0 h1ae530e_0 pkgs/r Cached # + picard 3.0.0 hdfd78af_0 bioconda Cached # + java -version openjdk version "11.0.15-internal" 2022-04-19 Then, edit in the following file so that it can use the host java (version 17) for the viral-ngs2 picard 3.0.0! -- vim /home/jhuang/miniconda3/envs/viral-ngs2/bin/picard # --------------------------------------------------------- # Use Java installed with Anaconda to ensure correct version java="$ENV_PREFIX/bin/java" # if JAVA_HOME is set (non-empty), use it. Otherwise keep "java" if [ -n "${JAVA_HOME:=}" ]; then if [ -e "$JAVA_HOME/bin/java" ]; then java="$JAVA_HOME/bin/java" fi fi # --------------------------------------------------------> #COMMENTED # Use Java installed with Anaconda to ensure correct version #java="$ENV_PREFIX/bin/java" #MODIFIED ## if JAVA_HOME is set (non-empty), use it. Otherwise keep "java" #if [ -n "${JAVA_HOME:=}" ]; then # if [ -e "$JAVA_HOME/bin/java" ]; then # java="$JAVA_HOME/bin/java" # fi #fi java="/usr/lib/jvm/java-17-openjdk-amd64/bin/java" # --------------------------------------------------------- # -- DEBUG_2: lastal version not compatible -- bin/ncbi.py fetch_fastas j.huang@uke.de lastal_db NC_001806.2 --combinedFilePrefix lastal --removeSeparateFiles --forceOverwrite --chunkSize 300 bin/taxon_filter.py filter_lastal_bam data/01_cleaned/HSV1_S1.cleaned.bam lastal_db/lastal.fasta data/01_cleaned/HSV1_S1.taxfilt.bam --threads 120 --JVMmemory 256g --loglevel DEBUG mamba remove last mamba install -c bioconda last=876 lastal -V bin/taxon_filter.py filter_lastal_bam data/01_cleaned/HSV1_S1.cleaned.bam lastal_db/lastal.fasta data/01_cleaned/HSV1_S1.taxfilt.bam --threads 120 --JVMmemory 256g --loglevel DEBUG # -- DEBUG_3: lastal version not compatible -- bin/assembly.py gapfill_gap2seq tmp/02_assembly/HSV1_S1_sampled.assembly2-scaffolded.fasta data/01_per_sample/HSV1_S1_sampled.cleaned.bam tmp/02_assembly/HSV1_S1_sampled.assembly2-gapfilled.fasta --memLimitGb 12 --maskErrors --randomSeed 0 --loglevel DEBUG #2024-11-07 12:34:14,732 - __init__:460:_attempt_install - DEBUG - Attempting install... #2024-11-07 12:34:14,733 - __init__:545:install_package - DEBUG - Creating conda environment and installing package gap2seq=2.1 mamba install gap2seq=2.1 # -- DEBUG_4 -- bin/assembly.py impute_from_reference tmp/02_assembly/HSV1_S1_sampled.assembly2-gapfilled.fasta tmp/02_assembly/HSV1_S1_sampled.assembly2-scaffold_ref.fasta tmp/02_assembly/HSV1_S1_sampled.assembly3-modify.fasta --newName HSV1_S1_sampled --replaceLength 55 --minLengthFraction 0.05 --minUnambig 0.05 --index --loglevel DEBUG 2024-11-07 14:05:20,438 - __init__:445:_attempt_install - DEBUG - Currently installed version of muscle: 5.2-h4ac6f70_0 2024-11-07 14:05:20,438 - __init__:448:_attempt_install - DEBUG - Expected version of muscle: 3.8.1551 2024-11-07 14:05:20,438 - __init__:449:_attempt_install - DEBUG - Incorrect version of muscle installed. Removing it... mamba install muscle=3.8 #- muscle 5.2 h4ac6f70_0 bioconda Cached #+ muscle 3.8.1551 h7d875b9_6 bioconda Cached #/home/jhuang/Tools/novocraft_v3/novoalign -f data/01_per_sample/HSV1_S1.cleaned.bam -r Random -l 20 -g 40 -x 20 -t 100 -F BAM -d tmp/02_assembly/HSV1_S1.assembly4-refined.nix -o SAM # -- DEBUG_5 -- bin/assembly.py refine_assembly tmp/02_assembly/HSV1_S1_sampled.assembly3-modify.fasta data/01_per_sample/HSV1_S1_sampled.cleaned.bam tmp/02_assembly/HSV1_S1_sampled.assembly4-refined.fasta --outVcf tmp/02_assembly/HSV1_S1_sampled.assembly3.vcf.gz --min_coverage 2 --novo_params '-r Random -l 20 -g 40 -x 20 -t 502' --threads 120 --loglevel DEBUG #Shebang in /usr/local/bin/gatk is corrupt. # -- DEBUG_6 -- bin/interhost.py multichr_mafft ref_genome/reference.fasta data/02_assembly/HSV1_S1_sampled.fasta data/03_multialign_to_ref --ep 0.123 --maxiters 1000 --preservecase --localpair --outFilePrefix aligned --sampleNameListFile data/03_multialign_to_ref/sampleNameList.txt --threads 120 --loglevel DEBUG 2024-11-07 14:47:34,163 - __init__:445:_attempt_install - DEBUG - Currently installed version of mafft: 7.526-h4bc722e_0 2024-11-07 14:47:34,163 - __init__:448:_attempt_install - DEBUG - Expected version of mafft: 7.221 2024-11-07 14:47:34,164 - __init__:449:_attempt_install - DEBUG - Incorrect version of mafft installed. Removing it... mamba install mafft=7.221 # -- DEBUG_7 -- bin/intrahost.py vphaser_one_sample data/02_align_to_self/HSV1_S1_sampled.mapped.bam data/02_assembly/HSV1_S1_sampled.fasta data/04_intrahost/vphaser2.HSV1_S1_sampled.txt.gz --vphaserNumThreads 120 --removeDoublyMappedReads --minReadsEach 5 --maxBias 10 --loglevel DEBUG export TMPDIR=/home/jhuang/tmp (viral-ngs) jhuang@WS-2290C:~/DATA/Data_Nicole_CaptureProbeSequencing$ /home/jhuang/miniconda3/envs/viral-ngs/bin/vphaser2 -i /home/jhuang/tmp/tmp_bq17yoq.mapped-withdoublymappedremoved.bam -o /home/jhuang/tmp/tmpyg8mlj5qvphaser2 samtools depth /home/jhuang/tmp/tmp_bq17yoq.mapped-withdoublymappedremoved.bam > coverage.txt # -- DEBUG_8 -- snakemake --printshellcmds --cores 100 bin/intrahost.py merge_to_vcf ref_genome/reference.fasta data/04_intrahost/isnvs.vcf.gz --samples HSV1_S1 --isnvs data/04_intrahost/vphaser2.HSV1_S1.txt.gz --alignments data/03_multialign_to_ref/aligned_1.fasta --strip_chr_version --parse_accession snakemake --printshellcmds --cores 100 # -- DEBUG_9 -- bin/assembly.py refine_assembly tmp/02_assembly/HSV-Klinik_S2.assembly3-modify.fasta data/01_per_sample/HSV-Klinik_S2.cleaned.bam tmp/02_assembly/HSV-Klinik_S2.assembly4-refined.fasta --outVcf tmp/02_assembly/HSV-Klinik_S2.assembly3.vcf.gz --min_coverage 2 --novo_params '-r Random -l 20 -g 40 -x 20 -t 502' --threads 120 --loglevel DEBUG /usr/local/bin/gatk -Xmx20g -Djava.io.tmpdir=/home/jhuang/tmp/tmp-assembly-refine_assembly-dx3dr73p -T RealignerTargetCreator -I /home/jhuang/tmp/tmp-assembly-refine_assembly-dx3dr73p/tmpwbzvjo9j.rmdup.bam -R /home/jhuang/tmp/tmp-assembly-refine_assembly-dx3dr73p/tmpxq4obe29.deambig.fasta -o /home/jhuang/tmp/tmp-assembly-refine_assembly-dx3dr73p/tmptkw8zcf3.intervals --num_threads 120 mamba install gatk=3.6 #IMPORTANT_REPLACE "sudo cp /home/jhuang/miniconda3/envs/viral-ngs4/bin/gatk3 /usr/local/bin/gatk" #IMPORTANT_UPDATE jar_file in the file with "/home/jhuang/Tools/GenomeAnalysisTK-3.6/GenomeAnalysisTK.jar" #IMPORTANT_SET /home/jhuang/Tools/GenomeAnalysisTK-3.6 as GATK_PATH in config.yaml #IMPORTANT_CHECK if it works # java -jar /home/jhuang/Tools/GenomeAnalysisTK-3.6/GenomeAnalysisTK.jar -T RealignerTargetCreator --help # /usr/local/bin/gatk -T RealignerTargetCreator --help #IMPORTANT_NOTE that the env viral-ngs4 cannot logined from the base env due to the python3-conflict! # -- DEBUG_10 (if the sequencing is too shawlow, then seperate running) -- /home/jhuang/miniconda3/envs/viral-ngs4/bin/vphaser2 -i /tmp/tmp2jl4plhy.mapped-withdoublymappedremoved.bam -o /tmp/tmp1x6jsiu_vphaser2 [EXIT]: gather_alignments: Failed to set region for reference HSV-Klinik_S2-1 in file /tmp/tmp2jl4plhy.mapped-withdoublymappedremoved.bam # Run seperate intrahost.py --> no error: #342 reads 2024-11-08 14:27:33,575 - intrahost:223:compute_library_bias - DEBUG - LB:standard has 161068 reads in 1 read group(s) (HSV-Klinik_S2) 2024-11-08 14:27:34,875 - __init__:445:_attempt_install - DEBUG - Currently installed version of vphaser2: 2.0-h7a259b3_14 samtools index HSV1_S1.mapped.bam samtools index HSV-Klinik_S2.mapped.bam bin/intrahost.py vphaser_one_sample data/02_align_to_self/HSV1_S1.mapped.bam data/02_assembly/HSV1_S1.fasta data/04_intrahost/vphaser2.HSV1_S1.txt.gz --vphaserNumThreads 120 --removeDoublyMappedReads --minReadsEach 5 --maxBias 10 --loglevel DEBUG bin/intrahost.py vphaser_one_sample data/02_align_to_self/HSV-Klinik_S2.mapped.bam data/02_assembly/HSV-Klinik_S2.fasta data/04_intrahost/vphaser2.HSV-Klinik_S2.txt.gz --minReadsEach 1 --maxBias 2 --loglevel DEBUG # --vphaserNumThreads 120 --removeDoublyMappedReads /home/jhuang/miniconda3/envs/viral-ngs4/bin/vphaser2 -i data/02_align_to_self/HSV-Klinik_S2.mapped.bam -o /tmp/tmpgacpc6eqvphaser2 samtools idxstats data/02_align_to_self/HSV-Klinik_S2.mapped.bam samtools index data/02_align_to_self/HSV-Klinik_S2.mapped.bam samtools view -H data/02_align_to_self/HSV-Klinik_S2.mapped.bam /home/jhuang/miniconda3/envs/viral-ngs4/bin/vphaser2 -i data/02_align_to_self/HSV-Klinik_S2.mapped.bam -o /tmp/output_dir /home/jhuang/miniconda3/envs/viral-ngs4/bin/vphaser2 -i data/02_align_to_self/HSV-Klinik_S2.mapped.bam -o /tmp/tmpgacpc6eqvphaser2 samtools view -b data/02_align_to_self/HSV-Klinik_S2.mapped.bam "HSV-Klinik_S2-1" > subset.bam samtools index subset.bam @SQ SN:HSV-Klinik_S2-1 LN:141125 AS:tmp35_s3ghx.ref_copy.nix samtools view -b subset.bam "HSV-Klinik_S2-1:1-10000" > small_subset.bam samtools index small_subset.bam /home/jhuang/miniconda3/envs/viral-ngs4/bin/vphaser2 -i small_subset.bam -o /tmp/output_dir /home/jhuang/miniconda3/envs/viral-ngs4/bin/vphaser2 -i subset.bam -o vphaser2_out # -- DEBUG_11 in step multi_align_mafft: aligned_1.fasta is always empty, we need generate it manually with mafft and mark it as complete -- #[Fri Nov 8 14:51:45 2024] #rule multi_align_mafft: # input: data/02_assembly/HSV1_S1.fasta, data/02_assembly/HSV-Klinik_S2.fasta, ref_genome/reference.fasta # output: data/03_multialign_to_ref/sampleNameList.txt, data/03_multialign_to_ref/aligned_1.fasta, data/03_multialign_to_ref/aligned_2.fasta, ... data/03_multialign_to_ref/aligned_161.fasta # jobid: 24 # resources: tmpdir=/tmp, mem=8, threads=120 bin/interhost.py multichr_mafft ref_genome/reference.fasta data/02_assembly/HSV1_S1.fasta data/02_assembly/HSV-Klinik_S2.fasta data/03_multialign_to_ref --ep 0.123 --maxiters 1000 --preservecase --localpair --outFilePrefix aligned --sampleNameListFile data/03_multialign_to_ref/sampleNameList.txt --threads 120 --loglevel DEBUG #b'/home/jhuang/miniconda3/envs/viral-ngs4/bin/python\n' #------- #2024-11-08 14:51:46,324 - cmd:193:main_argparse - INFO - software version: 1522433800, python version: 3.6.7 | packaged by conda-forge | (default, #Feb 28 2019, 09:07:38) #[GCC 7.3.0] #2024-11-08 15:00:26,375 - cmd:195:main_argparse - INFO - command: bin/interhost.py multichr_mafft inFastas=['ref_genome/reference.fasta', 'data/02_assembly/HSV1_S1.fasta', 'data/02_assembly/HSV-Klinik_S2.fasta'] localpair=True globalpair=None preservecase=True reorder=None gapOpeningPenalty=1.53 ep=0.123 verbose=False outputAsClustal=None maxiters=1000 outDirectory=data/03_multialign_to_ref outFilePrefix=aligned sampleRelationFile=None sampleNameListFile=data/03_multialign_to_ref/sampleNameList.txt threads=120 loglevel=DEBUG tmp_dir=/tmp tmp_dirKeep=False #2024-11-08 15:00:26,375 - cmd:209:main_argparse - DEBUG - using tempDir: /tmp/tmp-interhost-multichr_mafft-sw91_svl #2024-11-08 15:00:27,718 - __init__:445:_attempt_install - DEBUG - Currently installed version of mafft: 7.221-0 #2024-11-08 15:00:27,719 - mafft:141:execute - DEBUG - /home/jhuang/miniconda3/envs/viral-ngs4/bin/mafft --thread 120 --localpair --preservecase --op 1.53 --ep 0.123 --quiet --maxiterate 1000 /tmp/tmp-interhost-multichr_mafft-sw91_svl/tmp68_ln_ha.fasta snakemake --cleanup-metadata 03_multialign_to_ref --cores 4 # -- DEBUG_12 -- #[EXIT]: gather_alignments: Failed to set region for reference HSV-Klinik_S2-1 in file data/02_align_to_self/HSV-Klinik_S2.mapped.bam #DEBUG_PROCESS1: rm temp/*.region /home/jhuang/miniconda3/envs/viral-ngs4/bin/vphaser2 -w 5000 -i data/02_align_to_self/HSV-Klinik_S2.mapped.bam -o /home/jhuang/DATA/Data_Nicole_CaptureProbeSequencing/temp # 5209 snp # 21 lv #SOLUTION: MODFIED AS 'cmd = [self.install_and_get_path(), '-w 5000', '-i', inBam, '-o', outDir]' in bin/tools/vphaser2.py #ADDED cmd.append('-w') cmd.append('25000') bin/intrahost.py vphaser_one_sample data/02_align_to_self/HSV-Klinik_S2.mapped.bam data/02_assembly/HSV-Klinik_S2.fasta data/04_intrahost/vphaser2.HSV-Klinik_S2.txt.gz --vphaserNumThreads 120 --removeDoublyMappedReads --minReadsEach 5 --maxBias 10 --loglevel DEBUG #BEFORE_CHANGE: b'\n--------------------------------------------------------\nProgram runs with the following Parameter setting:\n\n\tinput BAM file\t=\t/tmp/tmpt6fgovqk.mapped-withdoublymappedremoved.bam\n\toutput Directory\t=\t/tmp/tmp53_oxecyvphaser2\n\terrModel\t\t=\tpileup + phase\n\talpha\t\t=\t0.05\n\tignoreBases \t=\t0\n\t(var_matepair, var_cycle, var_dt, var_qt)\t=\t1,1,1,20\n\tpSample\t\t=\t30%\n\twindowSz\t=\t500\n\tdelta\t=\t2\n\n #AFTER_CHANGE: windowSz=5000 #mkdir 02_align_to_ref bin/read_utils.py align_and_fix data/01_per_sample/HSV1_S1.cleaned.bam refsel_db/refsel.fasta --outBamAll data/02_align_to_ref/HSV1_S1.bam --outBamFiltered data/02_align_to_ref/HSV1_S1.mapped.bam --aligner novoalign --aligner_options '-r Random -l 20 -g 40 -x 20 -t 100 -k' --threads 120 bin/read_utils.py align_and_fix data/01_per_sample/HSV-Klinik_S2.cleaned.bam refsel_db/refsel.fasta --outBamAll data/02_align_to_ref/HSV-Klinik_S2.bam --outBamFiltered data/02_align_to_ref/HSV-Klinik_S2.mapped.bam --aligner novoalign --aligner_options '-r Random -l 20 -g 40 -x 20 -t 100 -k' --threads 120 bin/intrahost.py vphaser_one_sample data/02_align_to_ref/HSV1_S1.mapped.bam refsel_db/refsel.fasta data/04_intrahost/vphaser2.HSV-Klinik_S2_on_ref.txt.gz --vphaserNumThreads 120 --removeDoublyMappedReads --minReadsEach 5 --maxBias 10 bin/intrahost.py vphaser_one_sample data/02_align_to_ref/HSV-Klinik_S2.mapped.bam refsel_db/refsel.fasta data/04_intrahost/vphaser2.HSV-Klinik_S2_on_ref.txt.gz --vphaserNumThreads 120 --removeDoublyMappedReads --minReadsEach 5 --maxBias 10 /home/jhuang/miniconda3/envs/viral-ngs4/bin/vphaser2 -w 10000 -i data/02_align_to_ref/HSV-Klinik_S2.mapped.bam -o /home/jhuang/DATA/Data_Nicole_CaptureProbeSequencing/temp mkdir 02_align_to_NC_001806 bin/read_utils.py align_and_fix data/01_per_sample/HSV1_S1.cleaned.bam refsel_db/NC_001806.2.fasta --outBamAll data/02_align_to_NC_001806/HSV1_S1.bam --outBamFiltered data/02_align_to_NC_001806/HSV1_S1.mapped.bam --aligner novoalign --aligner_options '-r Random -l 20 -g 40 -x 20 -t 100 -k' --threads 120 bin/read_utils.py align_and_fix data/01_per_sample/HSV-Klinik_S2.cleaned.bam refsel_db/NC_001806.2.fasta --outBamAll data/02_align_to_NC_001806/HSV-Klinik_S2.bam --outBamFiltered data/02_align_to_NC_001806/HSV-Klinik_S2.mapped.bam --aligner novoalign --aligner_options '-r Random -l 20 -g 40 -x 20 -t 100 -k' --threads 120 bin/intrahost.py vphaser_one_sample data/02_align_to_NC_001806/HSV1_S1.mapped.bam refsel_db/NC_001806.2.fasta data/04_intrahost/vphaser2.HSV-Klinik_S2_on_NC_001806.txt.gz --vphaserNumThreads 120 --removeDoublyMappedReads --minReadsEach 5 --maxBias 10 bin/intrahost.py vphaser_one_sample data/02_align_to_NC_001806/HSV-Klinik_S2.mapped.bam refsel_db/NC_001806.2.fasta data/04_intrahost/vphaser2.HSV-Klinik_S2_on_NC_001806.txt.gz --vphaserNumThreads 120 --removeDoublyMappedReads --minReadsEach 5 --maxBias 10 #align to self #-rw-rw-r-- 1 jhuang jhuang 47M Nov 8 18:24 HSV-Klinik_S2.bam #-rw-rw-r-- 1 jhuang jhuang 6,3M Nov 8 18:24 HSV-Klinik_S2.mapped.bam #-rw-rw-r-- 1 jhuang jhuang 74M Nov 8 17:25 HSV1_S1.bam #-rw-rw-r-- 1 jhuang jhuang 25K Nov 8 17:25 HSV1_S1.mapped.bam #align to NC_001806 #-rw-rw-r-- 1 jhuang jhuang 48M Nov 11 13:26 HSV-Klinik_S2.bam #-rw-rw-r-- 1 jhuang jhuang 4,9M Nov 11 13:26 HSV-Klinik_S2.mapped.bam #-rw-rw-r-- 1 jhuang jhuang 74M Nov 11 13:31 HSV1_S1.bam #-rw-rw-r-- 1 jhuang jhuang 34K Nov 11 13:31 HSV1_S1.mapped.bam #align to OP297860 #-rw-rw-r-- 1 jhuang jhuang 47M Nov 12 12:35 HSV-Klinik_S2.bam #-rw-rw-r-- 1 jhuang jhuang 5,3M Nov 12 12:35 HSV-Klinik_S2.mapped.bam #-rw-rw-r-- 1 jhuang jhuang 74M Nov 12 12:31 HSV1_S1.bam #-rw-rw-r-- 1 jhuang jhuang 34K Nov 12 12:31 HSV1_S1.mapped.bam #align to self #-rw-rw-r-- 1 jhuang jhuang 47M Nov 11 21:44 HSV-Klinik_S2.bam #-rw-rw-r-- 1 jhuang jhuang 6,3M Nov 11 21:44 HSV-Klinik_S2.mapped.bam #-rw-rw-r-- 1 jhuang jhuang 74M Nov 11 21:09 HSV1_S1.bam #-rw-rw-r-- 1 jhuang jhuang 25K Nov 11 21:09 HSV1_S1.mapped.bam # -- DEBUG_13 -- [Mon Nov 11 15:36:54 2024] rule isnvs_vcf: input: data/04_intrahost/vphaser2.HSV1_S1.txt.gz, data/04_intrahost/vphaser2.HSV-Klinik_S2.txt.gz, data/03_multialign_to_ref/aligned_1.fasta, ref_genome/reference.fasta output: data/04_intrahost/isnvs.vcf.gz, data/04_intrahost/isnvs.vcf.gz.tbi, data/04_intrahost/isnvs.annot.vcf.gz, data/04_intrahost/isnvs.annot.txt.gz, data/04_intrahost/isnvs.annot.vcf.gz.tbi jobid: 21 resources: tmpdir=/tmp, mem=4 b'/home/jhuang/miniconda3/envs/viral-ngs4/bin/python\n' ------- bin/intrahost.py merge_to_vcf ref_genome/reference.fasta data/04_intrahost/isnvs.vcf.gz --samples HSV1_S1 HSV-Klinik_S2 --isnvs data/04_intrahost/vphaser2.HSV1_S1.txt.gz data/04_intrahost/vphaser2.HSV-Klinik_S2.txt.gz --alignments data/03_multialign_to_ref/aligned_1.fasta --strip_chr_version --parse_accession b'/home/jhuang/miniconda3/envs/viral-ngs4/bin/python\n' ------- 2024-11-11 15:36:55,581 - cmd:193:main_argparse - INFO - software version: 1522433800, python version: 3.6.7 | packaged by conda-forge | (default, Feb 28 2019, 09:07:38) [GCC 7.3.0] 2024-11-11 15:36:55,581 - cmd:195:main_argparse - INFO - command: bin/intrahost.py merge_to_vcf refFasta=ref_genome/reference.fasta outVcf=data/04_intrahost/isnvs.vcf.gz samples=['HSV1_S1', 'HSV-Klinik_S2'] isnvs=['data/04_intrahost/vphaser2.HSV1_S1.txt.gz', 'data/04_intrahost/vphaser2.HSV-Klinik_S2.txt.gz'] alignments=['data/03_multialign_to_ref/aligned_1.fasta'] strip_chr_version=True naive_filter=False parse_accession=True loglevel=INFO 2024-11-11 15:36:55,581 - intrahost:476:merge_to_vcf - INFO - loaded CoordMapper for all genomes, starting VCF merge... Traceback (most recent call last): File "bin/intrahost.py", line 1152, in
util.cmd.main_argparse(__commands__, __doc__) File “/home/jhuang/Tools/viral-ngs/bin/util/cmd.py”, line 221, in main_argparse ret = args.func_main(args) File “/home/jhuang/Tools/viral-ngs/bin/util/cmd.py”, line 102, in _main mainfunc(**args2) File “bin/intrahost.py”, line 677, in merge_to_vcf (sample, (s_pos, samp_offsets[sample]), ref_sequence.id, pos)) NotImplementedError: Sample HSV-Klinik_S2-1 has variants at 2 positions (8704, 8703) mapped to same reference position (AB291960.1:63) [Mon Nov 11 15:36:56 2024] Error in rule isnvs_vcf: jobid: 0 output: data/04_intrahost/isnvs.vcf.gz, data/04_intrahost/isnvs.vcf.gz.tbi, data/04_intrahost/isnvs.annot.vcf.gz, data/04_intrahost/isnvs.annot.txt.gz, data/04_intrahost/isnvs.annot.vcf.gz.tbi RuleException: CalledProcessError in line 61 of /mnt/md1/DATA_md1/Data_Nicole_CaptureProbeSequencing/bin/pipes/rules/intrahost.rules: Command ‘set -euo pipefail; bin/intrahost.py merge_to_vcf ref_genome/reference.fasta data/04_intrahost/isnvs.vcf.gz –samples HSV1_S1 HSV-Klinik_S2 –isnvs data/04_intrahost/vphaser2.HSV1_S1.txt.gz data/04_intrahost/vphaser2.HSV-Klinik_S2.txt.gz –alignments data/03_multialign_to_ref/aligned_1.fasta –strip_chr_version –parse_accession’ returned non-zero exit status 1. File “/mnt/md1/DATA_md1/Data_Nicole_CaptureProbeSequencing/bin/pipes/rules/intrahost.rules”, line 61, in __rule_isnvs_vcf File “/usr/lib/python3.10/concurrent/futures/thread.py”, line 58, in run Exiting because a job execution failed. Look above for error message Shutting down, this might take some time. Exiting because a job execution failed. Look above for error message Complete log: /mnt/md1/DATA_md1/Data_Nicole_CaptureProbeSequencing/.snakemake/log/2024-11-11T151925.063825.snakemake.log # –DEBUG_14 — bin/interhost.py multichr_mafft ref_genome/reference.fasta data/02_assembly/HSV-Klinik_S2.fasta data/03_multialign_to_ref –ep 0.123 –maxiters 1000 –preservecase –localpair –outFilePrefix aligned –sampleNameListFile data/03_multialign_to_ref/sampleNameList.txt –threads 120 bin/read_utils.py bwamem_idxstats inBam=data/01_cleaned/HSV-Klinik_S2.cleaned.bam refFasta=/home/jhuang/REFs/viral_ngs_dbs/spikeins/ercc_spike-ins.fasta outBam=None outStats=reports/spike_count/HSV-Klinik_S2.spike_count.txt min_score_to_filter=60 aligner_options=None loglevel=INFO tmp_dir=/tmp tmp_dirKeep=False loglevel=DEBUG -
Assembly results (look what are difference of the four versions 15K vs 73K in ~/DATA/Data_Nicole_CaptureProbeSequencing/tmp/02_assembly)
HSV1_S1.assembly2-gapfilled.fasta vs HSV-Klinik_S2.assembly2-gapfilled.fasta -rw-rw-r-- 1 jhuang jhuang 15K Nov 8 17:12 HSV1_S1.assembly1-spades.fasta -rw-rw-r-- 1 jhuang jhuang 155K Nov 8 17:12 HSV1_S1.assembly2-scaffold_ref.fasta -rw-rw-r-- 1 jhuang jhuang 130K Nov 8 17:12 HSV1_S1.assembly2-scaffolded.fasta -rw-rw-r-- 1 jhuang jhuang 176 Nov 8 17:12 HSV1_S1.assembly2-alternate_sequences.fasta -rw-rw-r-- 1 jhuang jhuang 130K Nov 8 17:14 HSV1_S1.assembly2-gapfilled.fasta -rw-rw-r-- 1 jhuang jhuang 26 Nov 8 17:18 HSV1_S1.assembly3-modify.fasta.fai -rw-rw-r-- 1 jhuang jhuang 182 Nov 8 17:18 HSV1_S1.assembly3-modify.dict -rw-r--r-- 1 jhuang jhuang 1,7M Nov 8 17:18 HSV1_S1.assembly3-modify.nix -rw-rw-r-- 1 jhuang jhuang 155K Nov 8 17:18 HSV1_S1.assembly3-modify.fasta -rw-rw-r-- 1 jhuang jhuang 212 Nov 8 17:21 HSV1_S1.assembly3.vcf.gz.tbi -rw-rw-r-- 1 jhuang jhuang 183 Nov 8 17:21 HSV1_S1.assembly4-refined.dict -rw-rw-r-- 1 jhuang jhuang 26 Nov 8 17:21 HSV1_S1.assembly4-refined.fasta.fai -rw-r--r-- 1 jhuang jhuang 1,2M Nov 8 17:21 HSV1_S1.assembly4-refined.nix -rw-rw-r-- 1 jhuang jhuang 137K Nov 8 17:21 HSV1_S1.assembly4-refined.fasta -rw-rw-r-- 1 jhuang jhuang 494K Nov 8 17:21 HSV1_S1.assembly3.vcf.gz -rw-rw-r-- 1 jhuang jhuang 203 Nov 8 17:22 HSV1_S1.assembly4.vcf.gz.tbi -rw-rw-r-- 1 jhuang jhuang 428K Nov 8 17:22 HSV1_S1.assembly4.vcf.gz -rw-rw-r-- 1 jhuang jhuang 73K Nov 8 18:03 HSV-Klinik_S2.assembly1-spades.fasta -rw-rw-r-- 1 jhuang jhuang 144K Nov 8 18:03 HSV-Klinik_S2.assembly2-scaffolded.fasta -rw-rw-r-- 1 jhuang jhuang 0 Nov 8 18:03 HSV-Klinik_S2.assembly2-alternate_sequences.fasta -rw-rw-r-- 1 jhuang jhuang 155K Nov 8 18:03 HSV-Klinik_S2.assembly2-scaffold_ref.fasta -rw-rw-r-- 1 jhuang jhuang 144K Nov 8 18:07 HSV-Klinik_S2.assembly2-gapfilled.fasta -rw-rw-r-- 1 jhuang jhuang 32 Nov 8 18:12 HSV-Klinik_S2.assembly3-modify.fasta.fai -rw-rw-r-- 1 jhuang jhuang 194 Nov 8 18:12 HSV-Klinik_S2.assembly3-modify.dict -rw-r--r-- 1 jhuang jhuang 1,7M Nov 8 18:12 HSV-Klinik_S2.assembly3-modify.nix -rw-rw-r-- 1 jhuang jhuang 155K Nov 8 18:12 HSV-Klinik_S2.assembly3-modify.fasta
-
draw coverages
* Mapping the contig on the reference JX878414 bowtie2-build refsel_db/refsel.fasta refsel_index #spades/contigs.fasta #bowtie2 -f -x refsel_index -U HSV1_S1_vrap_out/HSV1_S1_contigs.fasta -N 1 --score-min L,0,-1 --rdg 5,3 --rfg 5,3 -S HSV1_S1_contigs_aligned.sam bowtie2 -f -x refsel_index -U HSV1_S1_vrap_out/HSV1_S1_contigs.fasta -S HSV1_S1_contigs_aligned.sam samtools view -bS -F 4 HSV1_S1_contigs_aligned.sam > HSV1_S1_contigs_aligned.bam #samtools view -S -b HSV1_S1_contigs_aligned.sam > HSV1_S1_contigs_aligned.bam samtools sort HSV1_S1_contigs_aligned.bam -o HSV1_S1_contigs_aligned_sorted.bam samtools index HSV1_S1_contigs_aligned_sorted.bam samtools view HSV1_S1_contigs_aligned_sorted.bam > HSV1_S1_contigs_aligned_sorted.sam Query sequence name Query length ORF density Percentage identity Subject sequence length Subject accession Subject name E-value #TODO: Analyis in next time consider keep the column of query_coverage for quality control? #2486 reads; of these: # 2486 (100.00%) were unpaired; of these: # 2407 (96.82%) aligned 0 times # 79 (3.18%) aligned exactly 1 time # 0 (0.00%) aligned >1 times #3.18% overall alignment rate 11 reads; of these: 11 (100.00%) were unpaired; of these: 8 (72.73%) aligned 0 times 3 (27.27%) aligned exactly 1 time 0 (0.00%) aligned >1 times 27.27% overall alignment rate NODE_14_length_862_cov_192.742857 NODE_19_length_621_cov_61.380567 CAP_16_length_559 gi|946552631|gb|KT425109.1| Human alphaherpesvirus 1 strain KOS79 gi|2549839763|gb|OQ724891.1| Human alphaherpesvirus 1 strain BP-K5 gi|2228071600|gb|ON007132.1| Human alphaherpesvirus 1 strain v40_unk_gen samtools faidx HSV1_S1_contigs.fasta 'NODE_14_length_862_cov_192.742857' > HSV1_S1_contigs_.fasta samtools faidx HSV1_S1_contigs.fasta 'NODE_19_length_621_cov_61.380567' >> HSV1_S1_contigs_.fasta samtools faidx HSV1_S1_contigs.fasta 'CAP_16_length_559' >> HSV1_S1_contigs_.fasta bowtie2 -f -x refsel_index -U HSV-Klinik_S2_vrap_out/HSV-Klinik_S2_contigs.fasta -S HSV-Klinik_S2_contigs_aligned.sam samtools view -bS -F 4 HSV-Klinik_S2_contigs_aligned.sam > HSV-Klinik_S2_contigs_aligned.bam #samtools view -S -b HSV-Klinik_S2_contigs_aligned.sam > HSV-Klinik_S2_contigs_aligned.bam samtools sort HSV-Klinik_S2_contigs_aligned.bam -o HSV-Klinik_S2_contigs_aligned_sorted.bam samtools index HSV-Klinik_S2_contigs_aligned_sorted.bam samtools view HSV-Klinik_S2_contigs_aligned_sorted.bam > HSV-Klinik_S2_contigs_aligned_sorted.sam 31 reads; of these: 31 (100.00%) were unpaired; of these: 8 (25.81%) aligned 0 times 21 (67.74%) aligned exactly 1 time 2 (6.45%) aligned >1 times 74.19% overall alignment rate samtools faidx HSV-Klinik_S2_contigs.fasta 'NODE_14_length_2544_cov_467.428217' > HSV-Klinik_S2_contigs_.fasta samtools faidx HSV-Klinik_S2_contigs.fasta 'NODE_81_length_1225_cov_1080.820583' >> HSV-Klinik_S2_contigs_.fasta samtools faidx HSV-Klinik_S2_contigs.fasta 'NODE_114_length_1046_cov_1018.474429' >> HSV-Klinik_S2_contigs_.fasta samtools faidx HSV-Klinik_S2_contigs.fasta 'NODE_117_length_1033_cov_1618.421858' >> HSV-Klinik_S2_contigs_.fasta samtools faidx HSV-Klinik_S2_contigs.fasta 'NODE_152_length_927_cov_105.347500' >> HSV-Klinik_S2_contigs_.fasta samtools faidx HSV-Klinik_S2_contigs.fasta 'NODE_161_length_900_cov_3.283312' >> HSV-Klinik_S2_contigs_.fasta samtools faidx HSV-Klinik_S2_contigs.fasta 'NODE_220_length_795_cov_0.748879' >> HSV-Klinik_S2_contigs_.fasta samtools faidx HSV-Klinik_S2_contigs.fasta 'NODE_245_length_763_cov_900.518868' >> HSV-Klinik_S2_contigs_.fasta samtools faidx HSV-Klinik_S2_contigs.fasta 'NODE_352_length_664_cov_61.363128' >> HSV-Klinik_S2_contigs_.fasta samtools faidx HSV-Klinik_S2_contigs.fasta 'NODE_368_length_644_cov_489.846591' >> HSV-Klinik_S2_contigs_.fasta samtools faidx HSV-Klinik_S2_contigs.fasta 'NODE_373_length_653_cov_0.340304' >> HSV-Klinik_S2_contigs_.fasta samtools faidx HSV-Klinik_S2_contigs.fasta 'NODE_414_length_634_cov_2501.944773' >> HSV-Klinik_S2_contigs_.fasta samtools faidx HSV-Klinik_S2_contigs.fasta 'NODE_626_length_568_cov_1.630385' >> HSV-Klinik_S2_contigs_.fasta samtools faidx HSV-Klinik_S2_contigs.fasta 'NODE_1026_length_506_cov_2.593668' >> HSV-Klinik_S2_contigs_.fasta samtools faidx HSV-Klinik_S2_contigs.fasta 'CAP_7_length_1389' >> HSV-Klinik_S2_contigs_.fasta samtools faidx HSV-Klinik_S2_contigs.fasta 'CAP_8_length_1267' >> HSV-Klinik_S2_contigs_.fasta samtools faidx HSV-Klinik_S2_contigs.fasta 'CAP_9_length_1581' >> HSV-Klinik_S2_contigs_.fasta samtools faidx HSV-Klinik_S2_contigs.fasta 'CAP_18_length_896' >> HSV-Klinik_S2_contigs_.fasta samtools faidx HSV-Klinik_S2_contigs.fasta 'CAP_25_length_841' >> HSV-Klinik_S2_contigs_.fasta samtools faidx HSV-Klinik_S2_contigs.fasta 'CAP_52_length_1849' >> HSV-Klinik_S2_contigs_.fasta samtools faidx HSV-Klinik_S2_contigs.fasta 'CAP_53_length_665' >> HSV-Klinik_S2_contigs_.fasta samtools faidx HSV-Klinik_S2_contigs.fasta 'CAP_54_length_820' >> HSV-Klinik_S2_contigs_.fasta samtools faidx HSV-Klinik_S2_contigs.fasta 'CAP_56_length_1189' >> HSV-Klinik_S2_contigs_.fasta gi|1059802459|gb|LT594105.1| gi|2315197778|gb|OP297860.1| gi|2549840487|gb|OQ724911.1| gi|1059802767|gb|LT594109.1| gi|2620238293|gb|OR771685.1| gi|2620238293|gb|OR771685.1| gi|2315199769|gb|OP297886.1| gi|2549841171|gb|OQ724933.1| gi|2620238293|gb|OR771685.1| gi|1809626902|gb|MN925871.1| gi|2618798953|gb|OR723971.1| gi|2315197778|gb|OP297860.1| gi|2277963097|gb|ON960059.1| gi|2620238293|gb|OR771685.1| gi|2549599151|gb|OQ724836.1| gi|1717903527|gb|MN136523.1| gi|1059802459|gb|LT594105.1| gi|2549841171|gb|OQ724933.1| gi|2315197778|gb|OP297860.1| gi|2620238293|gb|OR771685.1| gi|2315197778|gb|OP297860.1| gi|1809626902|gb|MN925871.1| Human herpesvirus 1 isolate 172_2010 genome assembly Human alphaherpesvirus 1 strain HSV1-v60_d3_cu_gen_les Human alphaherpesvirus 1 strain BP-K12 Human herpesvirus 1 isolate 270_2007 genome assembly Human alphaherpesvirus 1 isolate HSV1/USA/WA-UW-2L9/2020 Human alphaherpesvirus 1 isolate HSV1/USA/WA-UW-2L9/2020 Human alphaherpesvirus 1 strain HSV1-v72_d53_cu_gen_les Human alphaherpesvirus 1 strain BP-L2 Human alphaherpesvirus 1 isolate HSV1/USA/WA-UW-2L9/2020 UNVERIFIED: Human alphaherpesvirus 1 strain Sample4_DOCK8 Mutant Human alphaherpesvirus 1 isolate dsncRNA12 Human alphaherpesvirus 1 strain HSV1-v60_d3_cu_gen_les Human alphaherpesvirus 1 strain HSV1-San-Francisco-USA-1974-HTZ Human alphaherpesvirus 1 isolate HSV1/USA/WA-UW-2L9/2020 UNVERIFIED: Human alphaherpesvirus 1 strain BP-C8 Human alphaherpesvirus 1 strain MacIntyre Human herpesvirus 1 isolate 172_2010 genome assembly Human alphaherpesvirus 1 strain BP-L2 Human alphaherpesvirus 1 strain HSV1-v60_d3_cu_gen_les Human alphaherpesvirus 1 isolate HSV1/USA/WA-UW-2L9/2020 Human alphaherpesvirus 1 strain HSV1-v60_d3_cu_gen_les UNVERIFIED: Human alphaherpesvirus 1 strain Sample4_DOCK8 Human alphaherpesvirus 1 strain HSV1-v67_d346_cu_gen_les #-->OR771685.1 #8278 reads; of these: # 8278 (100.00%) were unpaired; of these: # 3775 (45.60%) aligned 0 times # 4500 (54.36%) aligned exactly 1 time # 3 (0.04%) aligned >1 times #54.40% overall alignment rate * Generate Coverage Profile for Reads (from Fastq): Align the trimmed fastq reads to the reference genome using a mapper like BWA or Bowtie2 (WRONG), we should use novoalign #bwa index refsel_db/refsel.fasta #bwa mem refsel_db/refsel.fasta trimmed/HSV1_S1_R1.fastq.gz trimmed/HSV1_S1_R2.fastq.gz > HSV1_S1_reads_aligned.sam #samtools view -Sb HSV1_S1_reads_aligned.sam | samtools sort -o HSV1_S1_reads_aligned_sorted.bam #samtools index HSV1_S1_reads_aligned_sorted.bam #bwa mem refsel_db/refsel.fasta trimmed/HSV-Klinik_S2_R1.fastq.gz trimmed/HSV-Klinik_S2_R2.fastq.gz > HSV-Klinik_S2_reads_aligned.sam #samtools view -Sb HSV-Klinik_S2_reads_aligned.sam | samtools sort -o HSV-Klinik_S2_reads_aligned_sorted.bam #samtools index HSV-Klinik_S2_reads_aligned_sorted.bam cd data mkdir 02_align_to_OP297860 ../bin/read_utils.py align_and_fix 01_per_sample/HSV1_S1.cleaned.bam ../refsel_db/refsel.fasta --outBamAll 02_align_to_OP297860/HSV1_S1.bam --outBamFiltered 02_align_to_OP297860/HSV1_S1.mapped.bam --aligner novoalign --aligner_options '-r Random -l 20 -g 40 -x 20 -t 100 -k' --threads 120 ../bin/read_utils.py align_and_fix 01_per_sample/HSV-Klinik_S2.cleaned.bam ../refsel_db/refsel.fasta --outBamAll 02_align_to_OP297860/HSV-Klinik_S2.bam --outBamFiltered 02_align_to_OP297860/HSV-Klinik_S2.mapped.bam --aligner novoalign --aligner_options '-r Random -l 20 -g 40 -x 20 -t 100 -k' --threads 120 samtools sort 02_align_to_OP297860/HSV1_S1.mapped.bam -o HSV1_S1_reads_aligned_sorted.bam samtools index HSV1_S1_reads_aligned_sorted.bam samtools sort 02_align_to_OP297860/HSV-Klinik_S2.mapped.bam -o HSV-Klinik_S2_reads_aligned_sorted.bam samtools index HSV-Klinik_S2_reads_aligned_sorted.bam mv 02_align_to_OP297860/*.bam .. rmdir 02_align_to_OP297860 * Generate Coverage Tracks: Use BamCoverage to generate coverage files (in bigWig format) for both the reads and contigs. #find . -name "*_aligned_sorted.bam" bamCoverage -b ./HSV1_S1_reads_aligned_sorted.bam -o HSV1_S1_reads_coverage.bw bamCoverage -b ./HSV1_S1_contigs_aligned_sorted.bam -o HSV1_S1_contigs_coverage.bw bamCoverage -b ./HSV-Klinik_S2_reads_aligned_sorted.bam -o HSV-Klinik_S2_reads_coverage.bw bamCoverage -b ./HSV-Klinik_S2_contigs_aligned_sorted.bam -o HSV-Klinik_S2_contigs_coverage.bw * Visualize Alignments: Use tools like IGV (Integrative Genomics Viewer)
-
Reproduce 03_multialign_to_ref by generating consensus fasta
#bedtools bamtobed -i HSV-Klinik_S2_contigs_aligned_sorted.bam > contigs.bed bedtools bamtobed -i HSV1_S1_vrap_out_v5/bowtie/mapped_sorted.bam > contigs.bed bedtools merge -i contigs.bed > merged_contigs_coverage.bed awk '{sum += $3 - $2} END {print sum}' merged_contigs_coverage.bed #20916 #generate alignment form contigs.bam and refsel.fasta bcftools mpileup -f refsel_db/refsel.fasta -d 1000000 HSV-Klinik_S2_contigs_aligned_sorted.bam | bcftools call -mv --ploidy 1 -Ov -o contigs_variants.vcf bgzip contigs_variants.vcf tabix -p vcf contigs_variants.vcf.gz cat refsel_db/refsel.fasta | bcftools consensus contigs_variants.vcf.gz > aligned_contigs_to_reference.fasta # tabix -p vcf contigs_variants.vcf.gz # cat refsel_db/refsel.fasta | bcftools consensus contigs_variants.vcf.gz > aligned_contigs_to_reference.fasta #Note: the --sample option not given, applying all records regardless of the genotype #Applied 30 variants cat refsel_db/refsel.fasta aligned_contigs_to_reference.fasta > aligned_1.fasta #Header of the 2nd record is >HSV-Klinik_S2-1 mafft aligned_1.fasta | sed '/^>/! s/[a-z]/\U&/g' > data/03_multialign_to_ref/aligned_1.fasta
-
Reproduce 04_intrahost, #DEBUG_IMPORTANT_NOT_SAME_BETWEEN_VPHASER2_AND_FREEBAYES: why not intrahost variant calling not having the frequencies between 0.2 and 0.8. The list is also total different to the results from freebayes. try different combination of “”–removeDoublyMappedReads –minReadsEach 5 –maxBias 0″
awk '$6 >= 0.05' isnvs.annot.txt > isnvs.annot_.txt chr pos sample patient time alleles iSNV_freq Hw Hs eff_type eff_codon_dna eff_aa eff_aa_pos eff_prot_len eff_gene eff_protein * OP297860 13203 HSV-Klinik_S2 HSV-Klinik_S2 T,C,A 1 0.0165025249227804 1 synonymous_variant,intragenic_variant 1614A>G,1614A>T,n.13203T>C,n.13203T>A Val538Val 538 882 UL5 UXY89136.1,Gene_11440_14815 * OP297860 47109 HSV-Klinik_S2 HSV-Klinik_S2 T,G 0.992975413948821 0.0139504824839776 1 missense_variant 1126A>C Asn376His 376 376 UL23 UXY89153.1 OP297860 47989 HSV-Klinik_S2 HSV-Klinik_S2 G,T 0.0537303216974675 0.101686748455508 1 synonymous_variant 246C>A Pro82Pro 82 376 UL23 UXY89153.1 OP297860 55501 HSV-Klinik_S2 HSV-Klinik_S2 T,C,A 1 0.0204843614284831 1 synonymous_variant,intragenic_variant 720A>G,720A>T,n.55501T>C,n.55501T>A Ala240Ala 240 904 UL27,UL28 UXY89158.1,Gene_53483_58584 OP297860 55807 HSV-Klinik_S2 HSV-Klinik_S2 C,A 0.0622837370242215 0.116808946253038 1 missense_variant,intragenic_variant 414G>T,n.55807C>A Glu138Asp 138 904 UL27,UL28 UXY89158.1,Gene_53483_58584 * OP297860 65225 HSV-Klinik_S2 HSV-Klinik_S2 G,A 0.891530460624071 0.193407796807005 1 intragenic_variant n.65225G>A UL30 Gene_63070_67475 * OP297860 65402 HSV-Klinik_S2 HSV-Klinik_S2 C,A 0.102222222222222 0.183545679012346 1 intragenic_variant n.65402C>A UL30 Gene_63070_67475 OP297860 66570 HSV-Klinik_S2 HSV-Klinik_S2 G,T 0.0518433179723502 0.0983111767079359 1 intragenic_variant n.66570G>T UL30 Gene_63070_67475 OP297860 94750 HSV-Klinik_S2 HSV-Klinik_S2 G,T 0.0528511821974965 0.100115869475647 1 missense_variant 108G>T Gln36His 36 488 UL42 UXY89171.1 samtools faidx aligned_1.fasta "OP297860.1":13203-13203 #T samtools faidx aligned_1.fasta HSV-Klinik_S2-1:13203-13203 #T samtools faidx aligned_1.fasta "OP297860.1":47109-47109 #T samtools faidx aligned_1.fasta HSV-Klinik_S2-1:47109-47109 #T samtools faidx aligned_1.fasta "OP297860.1":47989-47989 #G samtools faidx aligned_1.fasta HSV-Klinik_S2-1:47989-47989 #G samtools faidx aligned_1.fasta "OP297860.1":65225-65225 #G samtools faidx aligned_1.fasta HSV-Klinik_S2-1:65225-65225 #A #DEBUG_IMPORTANT_NOT_SAME_BETWEEN_VPHASER2_AND_FREEBAYES: why not intrahost variant calling not located in 0.6, 0.4 vim bin/tools/vphaser2.py # set w=25000 rm -rf data/04_intrahost snakemake --printshellcmds --cores 10 samtools index data/02_align_to_self/HSV1_S1.mapped.bam samtools index data/02_align_to_self/HSV-Klinik_S2.mapped.bam bin/interhost.py multichr_mafft ref_genome/reference.fasta data/02_assembly/HSV-Klinik_S2.fasta data/03_multialign_to_ref --ep 0.123 --maxiters 1000 --preservecase --localpair --outFilePrefix aligned --sampleNameListFile data/03_multialign_to_ref/sampleNameList.txt --threads 120 -loglevel DEBUG #interhost variant calling, the number below should be not the same to the intrahost variant calling (the varaints from the isolate to its consensus assemby, this is why the frequency theoretically under 0.5. In intrahost variant calling, the REF refers to the base OP297860.1. It is possible that a ALT has 90% in the clinical samples --> All positions with > 0.5 means the consensus sequences are different to the CHROM. The frequences varies 0.00000001 to 1.0, since if the frequences with 0.0 will be not reported.) #The contigs contains a lot of positions wrongly assembled, so it is actually only much fewer following positions are interhost variants. samtools index HSV1_S1.mapped.bam samtools index HSV-Klinik_S2.mapped.bam bin/intrahost.py vphaser_one_sample data/02_align_to_self/HSV1_S1.mapped.bam data/02_assembly/HSV1_S1.fasta data/04_intrahost/vphaser2.HSV1_S1.txt.gz --vphaserNumThreads 120 --minReadsEach 5 --maxBias 0 --loglevel DEBUG awk '$7 >= 5' vphaser2.HSV-Klinik_S2_v2.txt > vphaser2.HSV-Klinik_S2_v2_.txt bin/intrahost.py vphaser_one_sample data/02_align_to_self/HSV-Klinik_S2.mapped.bam data/02_assembly/HSV-Klinik_S2.fasta data/04_intrahost/vphaser2.HSV1_S1.txt.gz --vphaserNumThreads 120 --removeDoublyMappedReads --minReadsEach 5 --maxBias 0 --loglevel DEBUG
-
Manully complete the assemblies with the reference genome and recreated 02_assembly, then rerun the pipelines for the steps after 02_align_to_self
~/Scripts/convert_fasta_to_clustal.py aligned_1.fasta_orig aligned_1.aln ~/Scripts/convert_clustal_to_clustal.py aligned_1.aln aligned_1_.aln #manully delete the postion with all or '-' in aligned_1_.aln ~/Scripts/check_sequence_differences.py aligned_1_.aln #Differences found at the following positions (150): Position 8956: OP297860.1 = A, HSV1_S1-1 = A, HSV-Klinik_S2-1 = G Position 8991: OP297860.1 = A, HSV1_S1-1 = A, HSV-Klinik_S2-1 = C Position 8992: OP297860.1 = T, HSV1_S1-1 = C, HSV-Klinik_S2-1 = C Position 8995: OP297860.1 = T, HSV1_S1-1 = T, HSV-Klinik_S2-1 = C Position 9190: OP297860.1 = T, HSV1_S1-1 = A, HSV-Klinik_S2-1 = T Position 9294: OP297860.1 = A, HSV1_S1-1 = G, HSV-Klinik_S2-1 = A Position 9298: OP297860.1 = A, HSV1_S1-1 = G, HSV-Klinik_S2-1 = A Position 9319: OP297860.1 = A, HSV1_S1-1 = G, HSV-Klinik_S2-1 = A Position 9324: OP297860.1 = T, HSV1_S1-1 = G, HSV-Klinik_S2-1 = T Position 9352: OP297860.1 = C, HSV1_S1-1 = T, HSV-Klinik_S2-1 = C Position 9368: OP297860.1 = A, HSV1_S1-1 = G, HSV-Klinik_S2-1 = A Position 10036: OP297860.1 = G, HSV1_S1-1 = G, HSV-Klinik_S2-1 = T Position 12006: OP297860.1 = C, HSV1_S1-1 = T, HSV-Klinik_S2-1 = C Position 12131: OP297860.1 = C, HSV1_S1-1 = M, HSV-Klinik_S2-1 = C Position 12748: OP297860.1 = C, HSV1_S1-1 = C, HSV-Klinik_S2-1 = A Position 12753: OP297860.1 = A, HSV1_S1-1 = G, HSV-Klinik_S2-1 = A * Position 13203: OP297860.1 = T, HSV1_S1-1 = C, HSV-Klinik_S2-1 = C * Position 13522: OP297860.1 = G, HSV1_S1-1 = T, HSV-Klinik_S2-1 = G Position 13557: OP297860.1 = A, HSV1_S1-1 = G, HSV-Klinik_S2-1 = A Position 13637: OP297860.1 = A, HSV1_S1-1 = G, HSV-Klinik_S2-1 = A * Position 13659: OP297860.1 = G, HSV1_S1-1 = T, HSV-Klinik_S2-1 = G Position 13731: OP297860.1 = T, HSV1_S1-1 = C, HSV-Klinik_S2-1 = T Position 13755: OP297860.1 = G, HSV1_S1-1 = G, HSV-Klinik_S2-1 = A Position 13778: OP297860.1 = T, HSV1_S1-1 = C, HSV-Klinik_S2-1 = T Position 14835: OP297860.1 = A, HSV1_S1-1 = A, HSV-Klinik_S2-1 = G Position 34549: OP297860.1 = C, HSV1_S1-1 = C, HSV-Klinik_S2-1 = T Position 34705: OP297860.1 = G, HSV1_S1-1 = G, HSV-Klinik_S2-1 = A Position 41118: OP297860.1 = G, HSV1_S1-1 = G, HSV-Klinik_S2-1 = A Position 41422: OP297860.1 = G, HSV1_S1-1 = G, HSV-Klinik_S2-1 = A Position 44110: OP297860.1 = A, HSV1_S1-1 = A, HSV-Klinik_S2-1 = C Position 44137: OP297860.1 = T, HSV1_S1-1 = T, HSV-Klinik_S2-1 = C Position 44190: OP297860.1 = G, HSV1_S1-1 = G, HSV-Klinik_S2-1 = A Position 44227: OP297860.1 = C, HSV1_S1-1 = C, HSV-Klinik_S2-1 = G Position 44295: OP297860.1 = A, HSV1_S1-1 = A, HSV-Klinik_S2-1 = C Position 46861: OP297860.1 = T, HSV1_S1-1 = T, HSV-Klinik_S2-1 = C # Position 47109: OP297860.1 = T, HSV1_S1-1 = T, HSV-Klinik_S2-1 = G Position 47170: OP297860.1 = G, HSV1_S1-1 = T, HSV-Klinik_S2-1 = T Position 47182: OP297860.1 = G, HSV1_S1-1 = G, HSV-Klinik_S2-1 = A Position 47320: OP297860.1 = A, HSV1_S1-1 = A, HSV-Klinik_S2-1 = G Position 47375: OP297860.1 = G, HSV1_S1-1 = A, HSV-Klinik_S2-1 = G Position 47377: OP297860.1 = G, HSV1_S1-1 = G, HSV-Klinik_S2-1 = T Position 47393: OP297860.1 = T, HSV1_S1-1 = C, HSV-Klinik_S2-1 = C Position 47433: OP297860.1 = G, HSV1_S1-1 = G, HSV-Klinik_S2-1 = T Position 47436: OP297860.1 = C, HSV1_S1-1 = C, HSV-Klinik_S2-1 = A Position 47484: OP297860.1 = C, HSV1_S1-1 = C, HSV-Klinik_S2-1 = A Position 47516: OP297860.1 = T, HSV1_S1-1 = C, HSV-Klinik_S2-1 = C Position 47563: OP297860.1 = G, HSV1_S1-1 = G, HSV-Klinik_S2-1 = A Position 47660: OP297860.1 = G, HSV1_S1-1 = G, HSV-Klinik_S2-1 = A Position 47707: OP297860.1 = T, HSV1_S1-1 = T, HSV-Klinik_S2-1 = C Position 47722: OP297860.1 = A, HSV1_S1-1 = G, HSV-Klinik_S2-1 = G * Position 47969: OP297860.1 = C, HSV1_S1-1 = T, HSV-Klinik_S2-1 = C Position 48064: OP297860.1 = G, HSV1_S1-1 = A, HSV-Klinik_S2-1 = A Position 48113: OP297860.1 = C, HSV1_S1-1 = C, HSV-Klinik_S2-1 = T Position 48129: OP297860.1 = T, HSV1_S1-1 = C, HSV-Klinik_S2-1 = C Position 48167: OP297860.1 = T, HSV1_S1-1 = C, HSV-Klinik_S2-1 = C Position 48219: OP297860.1 = A, HSV1_S1-1 = A, HSV-Klinik_S2-1 = C Position 48255: OP297860.1 = G, HSV1_S1-1 = T, HSV-Klinik_S2-1 = G Position 48384: OP297860.1 = C, HSV1_S1-1 = G, HSV-Klinik_S2-1 = C Position 53216: OP297860.1 = G, HSV1_S1-1 = G, HSV-Klinik_S2-1 = T Position 53254: OP297860.1 = C, HSV1_S1-1 = G, HSV-Klinik_S2-1 = C Position 53265: OP297860.1 = G, HSV1_S1-1 = T, HSV-Klinik_S2-1 = G Position 53291: OP297860.1 = C, HSV1_S1-1 = T, HSV-Klinik_S2-1 = C Position 53298: OP297860.1 = A, HSV1_S1-1 = G, HSV-Klinik_S2-1 = G Position 53403: OP297860.1 = C, HSV1_S1-1 = T, HSV-Klinik_S2-1 = C Position 53423: OP297860.1 = C, HSV1_S1-1 = C, HSV-Klinik_S2-1 = T Position 53445: OP297860.1 = C, HSV1_S1-1 = A, HSV-Klinik_S2-1 = C Position 53450: OP297860.1 = C, HSV1_S1-1 = A, HSV-Klinik_S2-1 = C Position 53460: OP297860.1 = A, HSV1_S1-1 = G, HSV-Klinik_S2-1 = A Position 53659: OP297860.1 = A, HSV1_S1-1 = C, HSV-Klinik_S2-1 = A * Position 53691: OP297860.1 = G, HSV1_S1-1 = T, HSV-Klinik_S2-1 = G Position 54007: OP297860.1 = G, HSV1_S1-1 = G, HSV-Klinik_S2-1 = A Position 54013: OP297860.1 = G, HSV1_S1-1 = G, HSV-Klinik_S2-1 = A Position 54025: OP297860.1 = A, HSV1_S1-1 = A, HSV-Klinik_S2-1 = G Position 54073: OP297860.1 = G, HSV1_S1-1 = G, HSV-Klinik_S2-1 = A Position 54408: OP297860.1 = T, HSV1_S1-1 = T, HSV-Klinik_S2-1 = G Position 54568: OP297860.1 = G, HSV1_S1-1 = G, HSV-Klinik_S2-1 = T Position 54708: OP297860.1 = T, HSV1_S1-1 = T, HSV-Klinik_S2-1 = G Position 54709: OP297860.1 = G, HSV1_S1-1 = G, HSV-Klinik_S2-1 = A * Position 55501: OP297860.1 = T, HSV1_S1-1 = C, HSV-Klinik_S2-1 = C Position 55507: OP297860.1 = G, HSV1_S1-1 = A, HSV-Klinik_S2-1 = G Position 55543: OP297860.1 = G, HSV1_S1-1 = A, HSV-Klinik_S2-1 = G Position 56493: OP297860.1 = A, HSV1_S1-1 = A, HSV-Klinik_S2-1 = G Position 56753: OP297860.1 = G, HSV1_S1-1 = T, HSV-Klinik_S2-1 = G Position 56981: OP297860.1 = A, HSV1_S1-1 = A, HSV-Klinik_S2-1 = G Position 58075: OP297860.1 = A, HSV1_S1-1 = A, HSV-Klinik_S2-1 = G Position 58078: OP297860.1 = C, HSV1_S1-1 = C, HSV-Klinik_S2-1 = T Position 58526: OP297860.1 = T, HSV1_S1-1 = C, HSV-Klinik_S2-1 = C Position 58550: OP297860.1 = C, HSV1_S1-1 = C, HSV-Klinik_S2-1 = A Position 58604: OP297860.1 = C, HSV1_S1-1 = C, HSV-Klinik_S2-1 = A Position 58615: OP297860.1 = C, HSV1_S1-1 = C, HSV-Klinik_S2-1 = A Position 58789: OP297860.1 = C, HSV1_S1-1 = C, HSV-Klinik_S2-1 = A * Position 63248: OP297860.1 = G, HSV1_S1-1 = T, HSV-Klinik_S2-1 = G Position 63799: OP297860.1 = T, HSV1_S1-1 = C, HSV-Klinik_S2-1 = T * Position 64328: OP297860.1 = C, HSV1_S1-1 = A, HSV-Klinik_S2-1 = C Position 65179: OP297860.1 = T, HSV1_S1-1 = T, HSV-Klinik_S2-1 = C * Position 65225: OP297860.1 = G, HSV1_S1-1 = G, HSV-Klinik_S2-1 = A Position 65992: OP297860.1 = T, HSV1_S1-1 = C, HSV-Klinik_S2-1 = C Position 66677: OP297860.1 = G, HSV1_S1-1 = G, HSV-Klinik_S2-1 = A Position 67336: OP297860.1 = G, HSV1_S1-1 = G, HSV-Klinik_S2-1 = A Position 87848: OP297860.1 = T, HSV1_S1-1 = T, HSV-Klinik_S2-1 = C Position 87866: OP297860.1 = C, HSV1_S1-1 = C, HSV-Klinik_S2-1 = G Position 87942: OP297860.1 = C, HSV1_S1-1 = C, HSV-Klinik_S2-1 = G Position 87949: OP297860.1 = A, HSV1_S1-1 = A, HSV-Klinik_S2-1 = G * Position 95302: OP297860.1 = C, HSV1_S1-1 = A, HSV-Klinik_S2-1 = C Position 95320: OP297860.1 = G, HSV1_S1-1 = K, HSV-Klinik_S2-1 = G Position 95992: OP297860.1 = G, HSV1_S1-1 = A, HSV-Klinik_S2-1 = G Position 96124: OP297860.1 = G, HSV1_S1-1 = A, HSV-Klinik_S2-1 = G Position 96138: OP297860.1 = T, HSV1_S1-1 = C, HSV-Klinik_S2-1 = T Position 96145: OP297860.1 = C, HSV1_S1-1 = A, HSV-Klinik_S2-1 = C Position 100159: OP297860.1 = T, HSV1_S1-1 = T, HSV-Klinik_S2-1 = C Position 107885: OP297860.1 = C, HSV1_S1-1 = C, HSV-Klinik_S2-1 = G Position 114972: OP297860.1 = G, HSV1_S1-1 = G, HSV-Klinik_S2-1 = T Position 117663: OP297860.1 = T, HSV1_S1-1 = T, HSV-Klinik_S2-1 = C Position 117802: OP297860.1 = T, HSV1_S1-1 = T, HSV-Klinik_S2-1 = A Position 117834: OP297860.1 = C, HSV1_S1-1 = C, HSV-Klinik_S2-1 = A Position 117841: OP297860.1 = A, HSV1_S1-1 = A, HSV-Klinik_S2-1 = G Position 118616: OP297860.1 = T, HSV1_S1-1 = T, HSV-Klinik_S2-1 = G Position 119486: OP297860.1 = A, HSV1_S1-1 = A, HSV-Klinik_S2-1 = G Position 119519: OP297860.1 = A, HSV1_S1-1 = A, HSV-Klinik_S2-1 = G Position 120688: OP297860.1 = T, HSV1_S1-1 = T, HSV-Klinik_S2-1 = C Position 120690: OP297860.1 = G, HSV1_S1-1 = G, HSV-Klinik_S2-1 = T Position 120711: OP297860.1 = T, HSV1_S1-1 = T, HSV-Klinik_S2-1 = C Position 120714: OP297860.1 = T, HSV1_S1-1 = T, HSV-Klinik_S2-1 = C Position 133842: OP297860.1 = A, HSV1_S1-1 = A, HSV-Klinik_S2-1 = G Position 133894: OP297860.1 = G, HSV1_S1-1 = G, HSV-Klinik_S2-1 = T Position 134778: OP297860.1 = C, HSV1_S1-1 = C, HSV-Klinik_S2-1 = T Position 134788: OP297860.1 = C, HSV1_S1-1 = C, HSV-Klinik_S2-1 = A Position 134867: OP297860.1 = T, HSV1_S1-1 = T, HSV-Klinik_S2-1 = G Position 134895: OP297860.1 = A, HSV1_S1-1 = A, HSV-Klinik_S2-1 = G Position 134898: OP297860.1 = T, HSV1_S1-1 = T, HSV-Klinik_S2-1 = C Position 134942: OP297860.1 = T, HSV1_S1-1 = T, HSV-Klinik_S2-1 = G Position 136436: OP297860.1 = C, HSV1_S1-1 = C, HSV-Klinik_S2-1 = A Position 136900: OP297860.1 = G, HSV1_S1-1 = G, HSV-Klinik_S2-1 = A Position 137047: OP297860.1 = T, HSV1_S1-1 = T, HSV-Klinik_S2-1 = C Position 137155: OP297860.1 = C, HSV1_S1-1 = C, HSV-Klinik_S2-1 = G Position 137527: OP297860.1 = A, HSV1_S1-1 = A, HSV-Klinik_S2-1 = T Position 137569: OP297860.1 = C, HSV1_S1-1 = C, HSV-Klinik_S2-1 = T Position 137602: OP297860.1 = C, HSV1_S1-1 = C, HSV-Klinik_S2-1 = A Position 137944: OP297860.1 = T, HSV1_S1-1 = A, HSV-Klinik_S2-1 = T Position 138170: OP297860.1 = T, HSV1_S1-1 = C, HSV-Klinik_S2-1 = C Position 138343: OP297860.1 = C, HSV1_S1-1 = C, HSV-Klinik_S2-1 = T Position 138880: OP297860.1 = A, HSV1_S1-1 = A, HSV-Klinik_S2-1 = G Position 139104: OP297860.1 = T, HSV1_S1-1 = T, HSV-Klinik_S2-1 = C Position 140457: OP297860.1 = C, HSV1_S1-1 = C, HSV-Klinik_S2-1 = M Position 141865: OP297860.1 = A, HSV1_S1-1 = A, HSV-Klinik_S2-1 = G Position 141889: OP297860.1 = C, HSV1_S1-1 = C, HSV-Klinik_S2-1 = A Position 141937: OP297860.1 = G, HSV1_S1-1 = G, HSV-Klinik_S2-1 = C Position 142056: OP297860.1 = C, HSV1_S1-1 = C, HSV-Klinik_S2-1 = G Position 144444: OP297860.1 = C, HSV1_S1-1 = C, HSV-Klinik_S2-1 = T ~/Scripts/convert_clustal_to_fasta.py aligned_1_.aln aligned_1.fasta samtools faidx aligned_1.fasta samtools faidx aligned_1.fasta OP297860.1 > OP297860.1.fasta samtools faidx aligned_1.fasta HSV1_S1-1 > HSV1_S1-1.fasta samtools faidx aligned_1.fasta HSV-Klinik_S2-1 > HSV-Klinik_S2-1.fasta seqkit seq OP297860.1.fasta -w 70 > OP297860.1_w70.fasta diff OP297860.1_w70.fasta ../../refsel_db/refsel.fasta #< >OP297860.1 #--- #> >OP297860.1 Human alphaherpesvirus 1 strain HSV1-v60_d3_cu_gen_les, complete genome #2180c2180,2181 #< ACGGGCCCCCCCCCGAAACACACCCCCCGGGGGTCGCGCGCGGCCCTT #--- #> ACGGGCCCCCCCCCGAAACACACCCCCCGGGGGTCGCGCGCGGCCCTTTAAAAAGGCGGGGCGGGT mv 02_assembly 02_assembly_v1 mv 02_align_to_self 02_align_to_self_v1 mv 03_multialign_to_ref/ 03_multialign_to_ref_v1 mv 04_intrahost 04_intrahost_v1 mkdir 02_assembly cp 03_multialign_to_ref_v1/HSV1_S1-1.fasta 02_assembly/HSV1_S1.fasta cp 03_multialign_to_ref_v1/HSV-Klinik_S2-1.fasta 02_assembly/HSV-Klinik_S2.fasta samtools faidx HSV1_S1.fasta picard CreateSequenceDictionary R=HSV1_S1.fasta O=HSV1_S1.dict ~/Tools/novocraft_v3/novoindex HSV1_S1.nix HSV1_S1.fasta samtools faidx HSV-Klinik_S2.fasta picard CreateSequenceDictionary R=HSV-Klinik_S2.fasta O=HSV-Klinik_S2.dict ~/Tools/novocraft_v3/novoindex HSV-Klinik_S2.nix HSV-Klinik_S2.fasta
-
If the reads in mapped.bam too few, we can manully rerun the following steps with custom defined bam, for example cleaned.bam or taxfilt.bam files (see the point 1).
# -- Adjust Novoalign parameter to increase the mapped reads in 02_align_to_self -- If you are working with NovoAlign for virus variant calling and find that very few reads are retained, you can adjust certain parameters to increase the read count while still maintaining high mapping quality. Here are some suggestions for tuning the parameters in NovoAlign: Reduce the Minimum Alignment Score Threshold (-t): Current Setting: -t 100 Suggestion: Try reducing this threshold to around -t 90 or -t 80. Explanation: The -t parameter in NovoAlign sets the minimum alignment score, which is the threshold for accepting an alignment. Lowering this score allows more alignments to pass through, increasing read retention. Reducing it slightly can retain quality while increasing the number of mapped reads. Adjust the Gap Penalty (-g): Current Setting: -g 40 Suggestion: Try using a slightly lower gap penalty, such as -g 20 or -g 30. Explanation: Lowering the gap penalty allows reads with minor gaps to align more easily, which may be beneficial for viral genomes with regions that might induce small indels. This adjustment should increase read retention without sacrificing too much mapping quality. Lower the Mismatch Penalty (-x): Current Setting: -x 20 Suggestion: Try reducing this to -x 15 or -x 10. Explanation: A lower mismatch penalty allows more reads with minor mismatches to map, increasing the number of mapped reads. For viral genomes, this can be helpful because some variability is expected, especially in variant-calling workflows. Experiment with the Random Alignment Option (-r): Current Setting: -r Random Suggestion: If applicable, you might try other random alignment settings in NovoAlign or disable it temporarily to see if deterministic behavior (i.e., -r All) provides more reads without sacrificing quality. Explanation: This option controls how NovoAlign treats random alignments. Testing with or without it may affect read retention, especially if many reads align equally well to multiple sites. Increase the Soft-Clipping Parameter (-l): Current Setting: -l 20 Suggestion: Try increasing to -l 30 or -l 40. Explanation: Higher soft-clipping allows NovoAlign to discard low-quality or mismatched bases at the read ends, which can improve alignment quality and retention by allowing reads that otherwise would be discarded due to terminal mismatches. Consider Using Paired-End Data: Suggestion: If you have paired-end data available, align the reads as paired rather than single-ended. Explanation: Paired-end alignment can improve mapping quality and retention since the additional read information helps resolve ambiguous mappings. It also increases the reliability of alignments by adding context from both read ends. Sample Adjusted Command Here’s an example of a modified NovoAlign command incorporating the above suggestions: novoalign -d reference.nix -f reads.fq -r Random -l 40 -g 30 -x 15 -t 80 -k > output.sam Additional Steps for High-Quality Variant Calling: Use a Quality Filter Post-Alignment: After alignment, apply a quality filter on the mapped reads using a tool like Samtools to ensure that only high-confidence alignments are used for variant calling. Optimize Read Processing: Trim low-quality bases and remove adapters prior to alignment to ensure that only high-quality reads are used. This will increase both the retention rate and the quality of the alignments. Review Variant Calling Parameters: After alignment, check the variant-calling parameters to ensure they are suitable for low-complexity viral genomes and that high-quality mapping is prioritized. These adjustments should help you retain more reads while still maintaining alignment quality suitable for variant calling. Adjust these parameters iteratively, evaluating the resulting alignments and variant calls to find the best balance between read count and quality. # (TODO) look which configuration can reach the similar results as the freebayes? vim bin/tools/vphaser2.py # edit '-w 22000' mkdir 04_intrahost #[E::idx_find_and_load] Could not retrieve index file for 'data/02_align_to_self/HSV-Klinik_S2.mapped.bam' #[E::idx_find_and_load] Could not retrieve index file for 'data/02_align_to_self/HSV-Klinik_S2.mapped.bam' samtools index data/02_align_to_self/HSV1_S1.mapped.bam samtools index data/02_align_to_self/HSV-Klinik_S2.mapped.bam bin/intrahost.py vphaser_one_sample data/02_align_to_self/HSV-Klinik_S2.mapped.bam data/02_assembly/HSV-Klinik_S2.fasta data/04_intrahost/vphaser2.HSV-Klinik_S2_removeDoubly_min5_max1000000_w22000.txt.gz --vphaserNumThreads 120 --removeDoublyMappedReads --minReadsEach 5 --maxBias 1000000 --loglevel DEBUG bin/intrahost.py merge_to_vcf ref_genome/reference.fasta data/04_intrahost/isnvs.vcf.gz --samples HSV-Klinik_S2 --isnvs data/04_intrahost/vphaser2.HSV-Klinik_S2_removeDoubly_min5_max1000000_w22000.txt --alignments data/03_multialign_to_ref/aligned_1.fasta --strip_chr_version --parse_accession #---- (Maybe next time, this time, it is not necessary): running once for l20_g40_x20_t100, once for l40_g30_x15_t80, which is option for novoalign in config.yaml, Note that we need rerun rerun 02_align_to_self. # -- 04_intrahost_--removeDoublyMappedReads_--minReadsEach5_--maxBias10 -- mkdir data/04_intrahost bin/intrahost.py vphaser_one_sample data/02_align_to_self/HSV1_S1.mapped.bam data/02_assembly/HSV1_S1.fasta data/04_intrahost/vphaser2.HSV1_S1.txt.gz --vphaserNumThreads 120 --removeDoublyMappedReads --minReadsEach 5 --maxBias 10 bin/intrahost.py vphaser_one_sample data/02_align_to_self/HSV-Klinik_S2.mapped.bam data/02_assembly/HSV-Klinik_S2.fasta data/04_intrahost/vphaser2.HSV-Klinik_S2.txt.gz --vphaserNumThreads 120 --removeDoublyMappedReads --minReadsEach 5 --maxBias 10 #bin/read_utils.py bwamem_idxstats data/01_cleaned/HSV-Klinik_S2.cleaned.bam /home/jhuang/REFs/viral_ngs_dbs/spikeins/ercc_spike-ins.fasta --outStats reports/spike_count/HSV-Klinik_S2.spike_count.txt --minScoreToFilter 60 bin/intrahost.py merge_to_vcf ref_genome/reference.fasta data/04_intrahost/isnvs.vcf.gz --samples HSV1_S1 HSV-Klinik_S2 --isnvs data/04_intrahost/vphaser2.HSV1_S1.txt.gz data/04_intrahost/vphaser2.HSV-Klinik_S2.txt.gz --alignments data/03_multialign_to_ref/aligned_1.fasta --strip_chr_version --parse_accession --loglevel=DEBUG bin/interhost.py snpEff data/04_intrahost/isnvs.vcf.gz OP297860.1 data/04_intrahost/isnvs.annot.vcf.gz j.huang@uke.de bin/intrahost.py iSNV_table data/04_intrahost/isnvs.annot.vcf.gz data/04_intrahost/isnvs.annot.txt.gz mv data/04_intrahost data/04_intrahost_l20_g40_x20_t100_removeDoublyMappedReads_minReadsEach5_maxBias10 cd data/04_intrahost_l20_g40_x20_t100_removeDoublyMappedReads_minReadsEach5_maxBias10 gunzip isnvs.annot.txt.gz ~/Scripts/filter_isnv.py isnvs.annot.txt 0.05 cut -d$'\t' filtered_isnvs.annot.txt -f1-7 chr pos sample patient time alleles iSNV_freq OP297860 13203 HSV1_S1 HSV1_S1 T,C,A 1.0 OP297860 13203 HSV-Klinik_S2 HSV-Klinik_S2 T,C,A 1.0 OP297860 13522 HSV1_S1 HSV1_S1 G,T 1.0 OP297860 13522 HSV-Klinik_S2 HSV-Klinik_S2 G,T 0.008905554253573941 OP297860 13659 HSV1_S1 HSV1_S1 G,T 1.0 OP297860 13659 HSV-Klinik_S2 HSV-Klinik_S2 G,T 0.008383233532934131 OP297860 47109 HSV1_S1 HSV1_S1 T,G 0.0 OP297860 47109 HSV-Klinik_S2 HSV-Klinik_S2 T,G 0.9929754139488208 OP297860 47969 HSV1_S1 HSV1_S1 C,T,A 1.0 OP297860 47969 HSV-Klinik_S2 HSV-Klinik_S2 C,T,A 0.017707985299031073 OP297860 47989 HSV1_S1 HSV1_S1 G,T 0.0 OP297860 47989 HSV-Klinik_S2 HSV-Klinik_S2 G,T 0.053730321697467484 OP297860 53691 HSV1_S1 HSV1_S1 G,T 1.0 OP297860 53691 HSV-Klinik_S2 HSV-Klinik_S2 G,T 0.023529411764705882 OP297860 55501 HSV1_S1 HSV1_S1 T,C,A 1.0 OP297860 55501 HSV-Klinik_S2 HSV-Klinik_S2 T,C,A 1.0 OP297860 55807 HSV1_S1 HSV1_S1 C,A 0.0 OP297860 55807 HSV-Klinik_S2 HSV-Klinik_S2 C,A 0.062176165803108814 OP297860 63248 HSV1_S1 HSV1_S1 G,T 1.0 OP297860 63248 HSV-Klinik_S2 HSV-Klinik_S2 G,T 0.016983016983016984 OP297860 64328 HSV1_S1 HSV1_S1 C,A 1.0 OP297860 64328 HSV-Klinik_S2 HSV-Klinik_S2 C,A 0.008469449485783423 OP297860 65225 HSV1_S1 HSV1_S1 G,A 0.0 OP297860 65225 HSV-Klinik_S2 HSV-Klinik_S2 G,A 0.8915304606240714 OP297860 65402 HSV1_S1 HSV1_S1 C,A 0.0 OP297860 65402 HSV-Klinik_S2 HSV-Klinik_S2 C,A 0.10222222222222224 OP297860 66570 HSV1_S1 HSV1_S1 G,T 0.0 OP297860 66570 HSV-Klinik_S2 HSV-Klinik_S2 G,T 0.05144291091593475 OP297860 94750 HSV1_S1 HSV1_S1 G,T 0.0 OP297860 94750 HSV-Klinik_S2 HSV-Klinik_S2 G,T 0.052851182197496516 OP297860 95302 HSV1_S1 HSV1_S1 C,A 1.0 OP297860 95302 HSV-Klinik_S2 HSV-Klinik_S2 C,A 0.01276595744680851 #mv data/04_intrahost data/04_intrahost_l40_g30_x15_t80_removeDoublyMappedReads_minReadsEach5_maxBias10 #cd data/04_intrahost_l40_g30_x15_t80_removeDoublyMappedReads_minReadsEach5_maxBias10 #gunzip isnvs.annot.txt.gz #Keep groups where at least one record has iSNV_freq >= 0.05 #~/Scripts/filter_isnv.py isnvs.annot.txt 0.05 #cut -d$'\t' filtered_isnvs.annot.txt -f1-7 # -- 04_intrahost_--minReadsEach5_--maxBias10 -- mkdir data/04_intrahost bin/intrahost.py vphaser_one_sample data/02_align_to_self/HSV1_S1.mapped.bam data/02_assembly/HSV1_S1.fasta data/04_intrahost/vphaser2.HSV1_S1.txt.gz --vphaserNumThreads 120 --minReadsEach 5 --maxBias 10 bin/intrahost.py vphaser_one_sample data/02_align_to_self/HSV-Klinik_S2.mapped.bam data/02_assembly/HSV-Klinik_S2.fasta data/04_intrahost/vphaser2.HSV-Klinik_S2.txt.gz --vphaserNumThreads 120 --minReadsEach 5 --maxBias 10 #bin/read_utils.py bwamem_idxstats data/01_cleaned/HSV-Klinik_S2.cleaned.bam /home/jhuang/REFs/viral_ngs_dbs/spikeins/ercc_spike-ins.fasta --outStats reports/spike_count/HSV-Klinik_S2.spike_count.txt --minScoreToFilter 60 bin/intrahost.py merge_to_vcf ref_genome/reference.fasta data/04_intrahost/isnvs.vcf.gz --samples HSV1_S1 HSV-Klinik_S2 --isnvs data/04_intrahost/vphaser2.HSV1_S1.txt.gz data/04_intrahost/vphaser2.HSV-Klinik_S2.txt.gz --alignments data/03_multialign_to_ref/aligned_1.fasta --strip_chr_version --parse_accession --loglevel=DEBUG bin/interhost.py snpEff data/04_intrahost/isnvs.vcf.gz OP297860.1 data/04_intrahost/isnvs.annot.vcf.gz j.huang@uke.de bin/intrahost.py iSNV_table data/04_intrahost/isnvs.annot.vcf.gz data/04_intrahost/isnvs.annot.txt.gz mv data/04_intrahost data/04_intrahost_l20_g40_x20_t100_minReadsEach5_maxBias10 cd data/04_intrahost_l20_g40_x20_t100_minReadsEach5_maxBias10 gunzip isnvs.annot.txt.gz ~/Scripts/filter_isnv.py isnvs.annot.txt 0.05 cut -d$'\t' filtered_isnvs.annot.txt -f1-7 chr pos sample patient time alleles iSNV_freq OP297860 13203 HSV1_S1 HSV1_S1 T,C,A 1.0 OP297860 13203 HSV-Klinik_S2 HSV-Klinik_S2 T,C,A 1.0 OP297860 13522 HSV1_S1 HSV1_S1 G,T 1.0 OP297860 13522 HSV-Klinik_S2 HSV-Klinik_S2 G,T 0.008888888888888889 OP297860 13659 HSV1_S1 HSV1_S1 G,T 1.0 OP297860 13659 HSV-Klinik_S2 HSV-Klinik_S2 G,T 0.008359207069500836 OP297860 47109 HSV1_S1 HSV1_S1 T,G 0.0 OP297860 47109 HSV-Klinik_S2 HSV-Klinik_S2 T,G 0.9930174563591022 OP297860 47969 HSV1_S1 HSV1_S1 C,T,A 1.0 OP297860 47969 HSV-Klinik_S2 HSV-Klinik_S2 C,T,A 0.01828457446808511 OP297860 47989 HSV1_S1 HSV1_S1 G,T 0.0 OP297860 47989 HSV-Klinik_S2 HSV-Klinik_S2 G,T 0.053474114441416885 OP297860 53691 HSV1_S1 HSV1_S1 G,T 1.0 OP297860 53691 HSV-Klinik_S2 HSV-Klinik_S2 G,T 0.02342786683107275 OP297860 55501 HSV1_S1 HSV1_S1 T,C,A 1.0 OP297860 55501 HSV-Klinik_S2 HSV-Klinik_S2 T,C,A 1.0 OP297860 55807 HSV1_S1 HSV1_S1 C,A 0.0 OP297860 55807 HSV-Klinik_S2 HSV-Klinik_S2 C,A 0.061538461538461535 OP297860 63248 HSV1_S1 HSV1_S1 G,T 1.0 OP297860 63248 HSV-Klinik_S2 HSV-Klinik_S2 G,T 0.016815034619188922 OP297860 64328 HSV1_S1 HSV1_S1 C,A 1.0 OP297860 64328 HSV-Klinik_S2 HSV-Klinik_S2 C,A 0.008433734939759036 OP297860 65225 HSV1_S1 HSV1_S1 G,A 0.0 OP297860 65225 HSV-Klinik_S2 HSV-Klinik_S2 G,A 0.8916728076639646 OP297860 65402 HSV1_S1 HSV1_S1 C,A 0.0 OP297860 65402 HSV-Klinik_S2 HSV-Klinik_S2 C,A 0.1018149623727313 OP297860 66570 HSV1_S1 HSV1_S1 G,T 0.0 OP297860 66570 HSV-Klinik_S2 HSV-Klinik_S2 G,T 0.05112219451371571 OP297860 94750 HSV1_S1 HSV1_S1 G,T 0.0 OP297860 94750 HSV-Klinik_S2 HSV-Klinik_S2 G,T 0.052851182197496516 OP297860 95302 HSV1_S1 HSV1_S1 C,A 1.0 OP297860 95302 HSV-Klinik_S2 HSV-Klinik_S2 C,A 0.012725344644750796 # -- 04_intrahost_--minReadsEach5_--maxBias1000000 -- mkdir data/04_intrahost bin/intrahost.py vphaser_one_sample data/02_align_to_self/HSV1_S1.mapped.bam data/02_assembly/HSV1_S1.fasta data/04_intrahost/vphaser2.HSV1_S1.txt.gz --vphaserNumThreads 120 --minReadsEach 5 --maxBias 1000000 bin/intrahost.py vphaser_one_sample data/02_align_to_self/HSV-Klinik_S2.mapped.bam data/02_assembly/HSV-Klinik_S2.fasta data/04_intrahost/vphaser2.HSV-Klinik_S2.txt.gz --vphaserNumThreads 120 --minReadsEach 5 --maxBias 1000000 #bin/read_utils.py bwamem_idxstats data/01_cleaned/HSV-Klinik_S2.cleaned.bam /home/jhuang/REFs/viral_ngs_dbs/spikeins/ercc_spike-ins.fasta --outStats reports/spike_count/HSV-Klinik_S2.spike_count.txt --minScoreToFilter 60 bin/intrahost.py merge_to_vcf ref_genome/reference.fasta data/04_intrahost/isnvs.vcf.gz --samples HSV1_S1 HSV-Klinik_S2 --isnvs data/04_intrahost/vphaser2.HSV1_S1.txt.gz data/04_intrahost/vphaser2.HSV-Klinik_S2.txt.gz --alignments data/03_multialign_to_ref/aligned_1.fasta --strip_chr_version --parse_accession --loglevel=DEBUG bin/interhost.py snpEff data/04_intrahost/isnvs.vcf.gz OP297860.1 data/04_intrahost/isnvs.annot.vcf.gz j.huang@uke.de bin/intrahost.py iSNV_table data/04_intrahost/isnvs.annot.vcf.gz data/04_intrahost/isnvs.annot.txt.gz mv data/04_intrahost data/04_intrahost_l20_g40_x20_t100_minReadsEach5_maxBias1000000 cd data/04_intrahost_l20_g40_x20_t100_minReadsEach5_maxBias1000000 gunzip isnvs.annot.txt.gz ~/Scripts/filter_isnv.py isnvs.annot.txt 0.05 cut -d$'\t' filtered_isnvs.annot.txt -f1-7 chr pos sample patient time alleles iSNV_freq OP297860 13203 HSV1_S1 HSV1_S1 T,C,A 1.0 OP297860 13203 HSV-Klinik_S2 HSV-Klinik_S2 T,C,A 1.0 OP297860 13522 HSV1_S1 HSV1_S1 G,T 1.0 OP297860 13522 HSV-Klinik_S2 HSV-Klinik_S2 G,T 0.008888888888888889 OP297860 13659 HSV1_S1 HSV1_S1 G,T 1.0 OP297860 13659 HSV-Klinik_S2 HSV-Klinik_S2 G,T 0.008359207069500836 OP297860 47109 HSV1_S1 HSV1_S1 T,G 0.0 OP297860 47109 HSV-Klinik_S2 HSV-Klinik_S2 T,G 0.9930174563591022 OP297860 47778 HSV1_S1 HSV1_S1 G,T 0.0 OP297860 47778 HSV-Klinik_S2 HSV-Klinik_S2 G,T 0.05263157894736842 OP297860 47969 HSV1_S1 HSV1_S1 C,T,A 1.0 OP297860 47969 HSV-Klinik_S2 HSV-Klinik_S2 C,T,A 0.01828457446808511 OP297860 47989 HSV1_S1 HSV1_S1 G,T 0.0 OP297860 47989 HSV-Klinik_S2 HSV-Klinik_S2 G,T 0.053474114441416885 OP297860 53691 HSV1_S1 HSV1_S1 G,T 1.0 OP297860 53691 HSV-Klinik_S2 HSV-Klinik_S2 G,T 0.02342786683107275 OP297860 55501 HSV1_S1 HSV1_S1 T,C,A 1.0 OP297860 55501 HSV-Klinik_S2 HSV-Klinik_S2 T,C,A 1.0 OP297860 55807 HSV1_S1 HSV1_S1 C,A 0.0 OP297860 55807 HSV-Klinik_S2 HSV-Klinik_S2 C,A 0.061538461538461535 OP297860 63248 HSV1_S1 HSV1_S1 G,T 1.0 OP297860 63248 HSV-Klinik_S2 HSV-Klinik_S2 G,T 0.016815034619188922 OP297860 64328 HSV1_S1 HSV1_S1 C,A 1.0 OP297860 64328 HSV-Klinik_S2 HSV-Klinik_S2 C,A 0.008433734939759036 OP297860 65225 HSV1_S1 HSV1_S1 G,A 0.0 OP297860 65225 HSV-Klinik_S2 HSV-Klinik_S2 G,A 0.8916728076639646 OP297860 65402 HSV1_S1 HSV1_S1 C,A 0.0 OP297860 65402 HSV-Klinik_S2 HSV-Klinik_S2 C,A 0.1018149623727313 OP297860 66570 HSV1_S1 HSV1_S1 G,T 0.0 OP297860 66570 HSV-Klinik_S2 HSV-Klinik_S2 G,T 0.05112219451371571 OP297860 94750 HSV1_S1 HSV1_S1 G,T 0.0 OP297860 94750 HSV-Klinik_S2 HSV-Klinik_S2 G,T 0.052851182197496516 OP297860 95302 HSV1_S1 HSV1_S1 C,A 1.0 OP297860 95302 HSV-Klinik_S2 HSV-Klinik_S2 C,A 0.012725344644750796
-
Install a new viral-ngs including interhost and annotation steps (Failed!)
#https://viral-ngs.readthedocs.io/en/latest/install.html wget https://raw.githubusercontent.com/broadinstitute/viral-ngs/master/easy-deploy-script/easy-deploy-viral-ngs.sh && chmod a+x ./easy-deploy-viral-ngs.sh && reuse UGER && qrsh -l h_vmem=10G -cwd -N "viral-ngs_deploy" -q interactive ./easy-deploy-viral-ngs.sh setup source ./easy-deploy-viral-ngs.sh load ./easy-deploy-viral-ngs.sh create-project HSV1_Capture #docker installation sudo usermod -aG docker jhuang #newgrp docker groups jhuang docker pull quay.io/broadinstitute/viral-ngs docker run -it quay.io/broadinstitute/viral-ngs /bin/bash
-
Note that the intrahost results does not include the interhost results. Checking process.
#Under data/02_assembly cp ../../ref_genome/reference.fasta HSV1_S1.fasta #>HSV1_S1-1 cp ../../ref_genome/reference.fasta HSV-Klinik_S2.fasta #>HSV-Klinik_S2-1 samtools faidx HSV1_S1.fasta picard CreateSequenceDictionary R=HSV1_S1.fasta O=HSV1_S1.dict ~/Tools/novocraft_v3/novoindex HSV1_S1.nix HSV1_S1.fasta samtools faidx HSV-Klinik_S2.fasta picard CreateSequenceDictionary R=HSV-Klinik_S2.fasta O=HSV-Klinik_S2.dict ~/Tools/novocraft_v3/novoindex HSV-Klinik_S2.nix HSV-Klinik_S2.fasta #total 128140 #-rw-rw-r-- 1 jhuang jhuang 76693037 Nov 13 09:59 HSV1_S1.bam #-rw-rw-r-- 1 jhuang jhuang 34590 Nov 13 09:59 HSV1_S1.mapped.bam #-rw-rw-r-- 1 jhuang jhuang 48946378 Nov 13 10:03 HSV-Klinik_S2.bam #-rw-rw-r-- 1 jhuang jhuang 5537247 Nov 13 10:03 HSV-Klinik_S2.mapped.bam # vs #total 128140 #-rw-rw-r-- 1 jhuang jhuang 76693095 Nov 15 12:47 HSV1_S1.bam #-rw-rw-r-- 1 jhuang jhuang 34587 Nov 15 12:47 HSV1_S1.mapped.bam #-rw-rw-r-- 1 jhuang jhuang 48946337 Nov 15 12:48 HSV-Klinik_S2.bam #-rw-rw-r-- 1 jhuang jhuang 5537246 Nov 15 12:48 HSV-Klinik_S2.mapped.bam #Manually generate the aligned_1.fasta due to too long runtime. cat ../../ref_genome/reference.fasta ../02_assembly/HSV1_S1.fasta ../02_assembly/HSV-Klinik_S2.fasta > aligned_1.fasta #>OP297860.1 Human alphaherpesvirus 1 strain HSV1-v60_d3_cu_gen_les, complete genome #>HSV1_S1-1 #>HSV-Klinik_S2-1 #If this results is similar to freebayes, means the results successfully include interhost-results. #TODO: In next step, we should feed another bam-files, e.g. the cleaned bam-file into the pipelines! #DOESN'T WORK: snakemake --cleanup-metadata data/03_multialign_to_ref/sampleNameList.txt data/03_multialign_to_ref/aligned_1.fasta --cores 1 snakemake --printshellcmds --cores all mkdir data/04_intrahost bin/intrahost.py vphaser_one_sample data/02_align_to_self/HSV1_S1.mapped.bam data/02_assembly/HSV1_S1.fasta data/04_intrahost/vphaser2.HSV1_S1.txt.gz --vphaserNumThreads 120 --removeDoublyMappedReads --minReadsEach 5 --maxBias 10 bin/intrahost.py vphaser_one_sample data/02_align_to_self/HSV-Klinik_S2.mapped.bam data/02_assembly/HSV-Klinik_S2.fasta data/04_intrahost/vphaser2.HSV-Klinik_S2.txt.gz --vphaserNumThreads 120 --removeDoublyMappedReads --minReadsEach 5 --maxBias 10 bin/intrahost.py merge_to_vcf ref_genome/reference.fasta data/04_intrahost/isnvs.vcf.gz --samples HSV1_S1 HSV-Klinik_S2 --isnvs data/04_intrahost/vphaser2.HSV1_S1.txt.gz data/04_intrahost/vphaser2.HSV-Klinik_S2.txt.gz --alignments data/03_multialign_to_ref/aligned_1.fasta --strip_chr_version --parse_accession --loglevel=DEBUG bin/interhost.py snpEff data/04_intrahost/isnvs.vcf.gz OP297860.1 data/04_intrahost/isnvs.annot.vcf.gz j.huang@uke.de bin/intrahost.py iSNV_table data/04_intrahost/isnvs.annot.vcf.gz data/04_intrahost/isnvs.annot.txt.gz mv data/04_intrahost data/04_intrahost_including_interhost cd data/04_intrahost_including_interhost gunzip isnvs.annot.txt.gz ~/Scripts/filter_isnv.py isnvs.annot.txt 0.05 cut -d$'\t' filtered_isnvs.annot.txt -f1-7 bin/intrahost.py merge_to_vcf ref_genome/reference.fasta data/04_intrahost/isnvs.vcf.gz --samples HSV1_S1 HSV-Klinik_S2 --isnvs data/04_intrahost/vphaser2.HSV1_S1.txt.gz data/04_intrahost/vphaser2.HSV-Klinik_S2.txt.gz --alignments data/03_multialign_to_ref/aligned_1.fasta --strip_chr_version --parse_accession awk '$7 >= 5' vphaser2.HSV-Klinik_S2_removeDoubly_min5_max1000000_w25000.txt > vphaser2.HSV-Klinik_S2_removeDoubly_min5_max1000000_w25000_0.05.txt awk '$7 >= 50' vphaser2.HSV-Klinik_S2_removeDoubly_min5_max1000000_w25000.txt > vphaser2.HSV-Klinik_S2_removeDoubly_min5_max1000000_w25000_0.5.txt # How many SNPs? #bin/intrahost.py vphaser_one_sample data_v2/02_align_to_self/HSV-Klinik_S2.mapped.bam data_v2/02_assembly/HSV-Klinik_S2.fasta data_v2/04_intrahost/vphaser2.HSV-Klinik_S2_v2.txt.gz --vphaserNumThreads 120 --minReadsEach 5 --maxBias 1000000 --loglevel DEBUG #mv vphaser2.HSV-Klinik_S2.txt.gz # How many SNPs? awk '$7 >= 5' vphaser2.HSV-Klinik_S2_v2.txt > vphaser2.HSV-Klinik_S2_v2_.txt bin/intrahost.py vphaser_one_sample data_v2/02_align_to_self/HSV-Klinik_S2.mapped.bam data_v2/02_assembly/HSV-Klinik_S2.fasta data_v2/04_intrahost/vphaser2.HSV-Klinik_S2_v3.txt.gz --vphaserNumThreads 120 --minReadsEach 5 --maxBias 10 --loglevel DEBUG # How many SNPs? awk '$6 >= 0.05' isnvs.annot.txt > isnvs.annot_.txt ------- #I used the viral-ngs get a table as follows: chr pos sample patient time alleles iSNV_freq Hw Hs eff_type eff_codon_dna eff_aa eff_aa_pos eff_prot_len eff_gene eff_protein OP297860 9012 HSV-Klinik_S2 HSV-Klinik_S2 C,A 0.0155954631379962 0.0307044893350152 1 intergenic_region n.9012C>A RL2-UL1 Gene_1996_5580-Gene_9025_10636 OP297860 9017 HSV-Klinik_S2 HSV-Klinik_S2 C,A 0.0408905043162199 0.0784369419459701 1 intergenic_region n.9017C>A RL2-UL1 Gene_1996_5580-Gene_9025_10636 In the process, the intrahost.py was used. intrahost.py - within-host genetic variation (iSNVs) The output has only contains I can so understand, the intrahost variants only reported. The chr OP297860 is only for the annotation. If a position in my clinical sample HSV-Klinik_S2 is different to OP297860, it will be not reported and not exists in the table. Column Descriptions in the Output Table The output table generated by this script will contain the following columns: chr: Chromosome or contig where the variant is located. pos: Position on the chromosome/contig of the variant. sample: The sample identifier for this variant. patient: Patient ID extracted from the sample name (assumes the format sample.patient). time: Time point of sample collection, extracted from the sample name (if present). alleles: The alleles involved in the variant. For example, C,A means Cytosine (C) and Adenine (A). iSNV_freq: Frequency of the variant in the sample. This is the sum of the frequencies of the variant alleles. Hw: Hardy-Weinberg equilibrium p-value for the variant. This is calculated from the genotype frequencies in the sample and indicates how well they conform to random mating expectations. Hs: Heterozygosity in the population based on consensus genotypes. It measures genetic diversity based on observed genotypes. eff_type: The type of effect the variant has on the gene, such as intergenic_region, start_lost, etc. eff_codon_dna: The effect of the variant at the DNA level (e.g., n.9012C>A). eff_aa: The amino acid effect of the variant (e.g., a change from one amino acid to another or a frameshift). eff_aa_pos: The position of the amino acid affected by the variant. eff_prot_len: The length of the protein after the variant is applied, which may be truncated if the variant causes a frameshift or a stop codon. eff_gene: The gene affected by the variant. eff_protein: The protein affected by the variant (e.g., a protein identifier like UXY89132.1). b'/home/jhuang/miniconda3/envs/viral-ngs4/bin/python\n' ------- 2024-11-12 13:22:47,892 - cmd:193:main_argparse - INFO - software version: 1522433800, python version: 3.6.7 | packaged by conda-forge | (default, Feb 28 2019, 09:07:38) [GCC 7.3.0] 2024-11-12 13:22:47,893 - cmd:195:main_argparse - INFO - command: bin/intrahost.py merge_to_vcf refFasta=ref_genome/reference.fasta outVcf=data/04_intrahost/isnvs.vcf.gz samples=['HSV-Klinik_S2'] isnvs=['data/04_intrahost/vphaser2.HSV-Klinik_S2.txt.gz'] alignments=['data/03_multialign_to_ref/aligned_1.fasta'] strip_chr_version=True naive_filter=False parse_accession=True loglevel=INFO 2024-11-12 13:22:47,893 - intrahost:476:merge_to_vcf - INFO - loaded CoordMapper for all genomes, starting VCF merge... Traceback (most recent call last): File "bin/intrahost.py", line 1152, in
util.cmd.main_argparse(__commands__, __doc__) File “/home/jhuang/Tools/viral-ngs/bin/util/cmd.py”, line 221, in main_argparse ret = args.func_main(args) File “/home/jhuang/Tools/viral-ngs/bin/util/cmd.py”, line 102, in _main mainfunc(**args2) File “bin/intrahost.py”, line 530, in merge_to_vcf raise LookupError(“Not all reference sequences found in alignments.”) LookupError: Not all reference sequences found in alignments. [Tue Nov 12 13:22:47 2024] Error in rule isnvs_vcf: jobid: 0 output: data/04_intrahost/isnvs.vcf.gz, data/04_intrahost/isnvs.vcf.gz.tbi, data/04_intrahost/isnvs.annot.vcf.gz, data/04_intrahost/isnvs.annot.txt.gz, data/04_intrahost/isnvs.annot.vcf.gz.tbi RuleException: CalledProcessError in line 61 of /mnt/md1/DATA_md1/Data_Nicole_CaptureProbeSequencing/bin/pipes/rules/intrahost.rules: Command ‘set -euo pipefail; bin/intrahost.py merge_to_vcf ref_genome/reference.fasta data/04_intrahost/isnvs.vcf.gz –samples HSV-Klinik_S2 –isnvs data/04_intrahost/vphaser2.HSV-Klinik_S2.txt.gz –alignments data/03_multialign_to_ref/aligned_1.fasta –strip_chr_version –parse_accession’ returned non-zero exit status 1. File “/mnt/md1/DATA_md1/Data_Nicole_CaptureProbeSequencing/bin/pipes/rules/intrahost.rules”, line 61, in __rule_isnvs_vcf File “/usr/lib/python3.10/concurrent/futures/thread.py”, line 58, in run Exiting because a job execution failed. Look above for error message Columns Breakdown: Ref_Pos (e.g., 55, 104, 210): This refers to the position in the genome where the variant occurs. In this example, the variants occur at positions 55, 104, and 210. Var (e.g., T C, G A, T C): This is the variant observed at that position. It shows the reference base (before the variant) and the alternate base (after the variant). For example: At position 55, the reference base is T and the alternate base is C. At position 104, the reference base is G and the alternate base is A. At position 210, the reference base is T and the alternate base is C. Cons (e.g., 0.8156, 0.1674, 0.1065): This represents the variant frequency (or proportion) in the sample, expressed as a decimal. It shows the fraction of reads supporting the alternate base (C, A, etc.). For example: At position 55, 81.56% of the reads support the alternate base C. At position 104, 16.74% of the reads support the alternate base A. At position 210, 10.65% of the reads support the alternate base C. Strd_bias_pval (e.g., 0.8156, 0.1674, 0.1065): This represents the strand bias p-value for the variant. It tests if there is an uneven distribution of reads between the forward and reverse strands for the variant. A higher p-value suggests no significant strand bias. A lower p-value suggests a possible strand bias, meaning the variant might be incorrectly called due to a bias in sequencing reads from one strand. Type (e.g., snp): This indicates the type of variant. In this case, it’s a SNP (single nucleotide polymorphism). It means that a single nucleotide in the genome has been altered. Var_perc (e.g., 16.1, 14.07, 10.58): This represents the percentage of variants for each alternate base, which is very similar to the Cons column but expressed as a percentage. For example: At position 55, the alternate base C is observed in 16.1% of the reads. At position 104, the alternate base A is observed in 14.07% of the reads. At position 210, the alternate base C is observed in 10.58% of the reads. SNP_or_LP_Profile (e.g., C:65:34 T:13:6): This contains information on the read counts for the reference base (T, G, etc.) and the alternate base (C, A, etc.). The format is: Reference base count (forward strand : reverse strand) Alternate base count (forward strand : reverse strand) For example, at position 55: C (alternate base) has 65 reads on the forward strand and 34 on the reverse strand. T (reference base) has 13 reads on the forward strand and 6 on the reverse strand. Summary: SNPV and LPV The last line of the output gives a summary of the total number of SNPs and LPs (likely Low-Quality Polymorphisms or Low Probability Variants): # Summary: SNPV: 132; LPV: 0 SNPV: 132: This indicates the total number of SNP variants detected in the data. In this case, there are 132 SNPs identified. LPV: 0: This indicates the number of Low Probability Variants (LPVs). A value of 0 means no low-quality variant calls were detected, indicating that the analysis did not identify any variants with low confidence. # Minimum number of reads on each strand vphaser_min_reads_each: 5 # Maximum allowable ratio of number of reads on the two # strands. Ignored if vphaser_max_bins=0. vphaser_max_bins: 10 # A simple filter for the VCF merge step. # If set to true, keep only the alleles that have at least two # independent libraries of support and # allele freq > 0.005. If false, no filtering is performed. vcf_merge_naive_filter: false -
(Optional)
152526 GapFiller.pl -l libraries_p2564.txt -s data/02_assembly/p2564.fasta #parainfluenza bwa /home/jhuang/DATA/Data_parainfluenza/trimmed/p2564_R1.fastq.gz /home/jhuang/DATA/Data_parainfluenza/trimmed/p2564_R2.fastq.gz 300 1.0 FR #since HSV1 and HSV-Klinik_S2 has different regions covered --> multialign_to_ref is none! bin/intrahost.py vphaser_one_sample data/02_align_to_self/HSV-Klinik_S2.mapped.bam data/02_assembly/HSV-Klinik_S2.fasta data/04_intrahost/vphaser2.HSV-Klinik_S2.txt.gz --vphaserNumThreads 120 --removeDoublyMappedReads --minReadsEach 5 --maxBias 10 (viral-ngs4) jhuang@WS-2290C:~/DATA/Data_Nicole_CaptureProbeSequencing/data/02_align_to_self$ samtools flagstat HSV-Klinik_S2.mapped.bam 162156 + 0 in total (QC-passed reads + QC-failed reads) 0 + 0 secondary 0 + 0 supplementary 0 + 0 duplicates 162156 + 0 mapped (100.00% : N/A) 162156 + 0 paired in sequencing 81048 + 0 read1 81108 + 0 read2 161068 + 0 properly paired (99.33% : N/A) 161630 + 0 with itself and mate mapped 526 + 0 singletons (0.32% : N/A) 0 + 0 with mate mapped to a different chr 0 + 0 with mate mapped to a different chr (mapQ>=5) (viral-ngs4) jhuang@WS-2290C:~/DATA/Data_Nicole_CaptureProbeSequencing/data/01_per_sample$ samtools flagstat HSV-Klinik_S2.taxfilt.bam 800454 + 0 in total (QC-passed reads + QC-failed reads) 0 + 0 secondary 0 + 0 supplementary 0 + 0 duplicates 0 + 0 mapped (0.00% : N/A) 800454 + 0 paired in sequencing 400227 + 0 read1 400227 + 0 read2 0 + 0 properly paired (0.00% : N/A) 0 + 0 with itself and mate mapped 0 + 0 singletons (0.00% : N/A) 0 + 0 with mate mapped to a different chr 0 + 0 with mate mapped to a different chr (mapQ>=5) (viral-ngs4) jhuang@WS-2290C:~/DATA/Data_Nicole_CaptureProbeSequencing/data/02_align_to_self$ samtools flagstat HSV-Klinik_S2.bam 885528 + 0 in total (QC-passed reads + QC-failed reads) 0 + 0 secondary 0 + 0 supplementary 191932 + 0 duplicates 354088 + 0 mapped (39.99% : N/A) 885528 + 0 paired in sequencing 442764 + 0 read1 442764 + 0 read2 323502 + 0 properly paired (36.53% : N/A) 324284 + 0 with itself and mate mapped 29804 + 0 singletons (3.37% : N/A) 0 + 0 with mate mapped to a different chr 0 + 0 with mate mapped to a different chr (mapQ>=5)
-
Summarize statistics from snakemake-output
samples-runs.txt samtools flagstat data/02_align_to_self/838_S1.mapped.bam samtools flagstat data/02_align_to_self/840_S2.mapped.bam samtools flagstat data/02_align_to_self/820_S3.mapped.bam samtools flagstat data/02_align_to_self/828_S4.mapped.bam samtools flagstat data/02_align_to_self/815_S5.mapped.bam samtools flagstat data/02_align_to_self/834_S6.mapped.bam samtools flagstat data/02_align_to_self/808_S7.mapped.bam samtools flagstat data/02_align_to_self/811_S8.mapped.bam samtools flagstat data/02_align_to_self/837_S9.mapped.bam samtools flagstat data/02_align_to_self/768_S10.mapped.bam samtools flagstat data/02_align_to_self/773_S11.mapped.bam samtools flagstat data/02_align_to_self/767_S12.mapped.bam samtools flagstat data/02_align_to_self/810_S13.mapped.bam samtools flagstat data/02_align_to_self/814_S14.mapped.bam samtools flagstat data/02_align_to_self/10121-16_S15.mapped.bam --> 3c Origin of hepatitis C virus genotype 3 in Africa as estimated through an evolutionary analysis of the full-length genomes of nine subtypes, including the newly sequenced 3d and 3e samtools flagstat data/02_align_to_self/7510-15_S16.mapped.bam --> samtools flagstat data/02_align_to_self/828-17_S17.mapped.bam samtools flagstat data/02_align_to_self/8806-15_S18.mapped.bam samtools flagstat data/02_align_to_self/9881-16_S19.mapped.bam samtools flagstat data/02_align_to_self/8981-14_S20.mapped.bam
-
Consensus sequences of each and of all isolates
cp data/02_assembly/*.fasta ./ for sample in 838_S1 840_S2 820_S3 828_S4 815_S5 834_S6 808_S7 811_S8 837_S9 768_S10 773_S11 767_S12 810_S13 814_S14 10121-16_S15 7510-15_S16 828-17_S17 8806-15_S18 9881-16_S19 8981-14_S20; do for sample in p953-84660-tsek p938-16972-nra p942-88507-nra p943-98523-nra p944-103323-nra p947-105565-nra p948-112830-nra; do \ mv ${sample}.fasta ${sample}.fa cat all.fa ${sample}.fa >> all.fa done cat RSV_dedup.fa all.fa > RSV_all.fa mafft --adjustdirection RSV_all.fa > RSV_all.aln snp-sites RSV_all.aln -o RSV_all_.aln
-
Finding the next strain with Phylogenetics: send both HCV231_all.png and HCV231_all.pdf to the Nicole
#1, generate tree cat SARS-CoV-2_len25000_w60_newheader.fa ~/rtpd_files/2029-AW_S5/idba_ud_assembly/gapped_contig.fa > CoV2_all.fa mafft --adjustdirection CoV2_all.fa > CoV2_all.aln snp-sites CoV2_all.aln -o CoV2_all_.aln fasttree -gtr -nt RSV_all_.aln > RSV_all.tree fasttree -gtr -nt Ortho_SNP_matrix_RAxML.fa > Ortho_SNP_matrix_RAxML.tree raxml-ng --all --model GTR+G+ASC_LEWIS --prefix CoV2_all_raxml.aln --threads 1 --msa CoV2_all_.aln --bs-trees 1000 --redo #raxml-ng --all --model GTR+G+ASC_LEWIS --prefix raxml-ng/snippy.core.aln --threads 1 --msa variants/snippy.core.aln --bs-trees 1000 --redo #2, open tree on Dendroscope, from phylogenetic tree, get genotype-refs as follows, 1a: S10, S11, 814_S14(3-->1a?), S18 --> 1a_EF407457 1b: S12 --> 1b_M58335 2a: 815_S5(3-->2a?) --> 2a_D00944 2c: S20 --> 2c_D50409 3a: S3, S7, S8, S13, S15, S16, S19 --> 3c_KY620605 4d: S1, S2, S9 --> 4d_EU392172 4k: S4, S6 --> 4k_EU392173 --> KX249682.1 --> KX765935.1 --> KM517573.1 cd data/02_assembly/ cat p2.fasta p3e.fasta p4e.fasta p5e.fasta > all.fasta sed -i -e 's/-1//g' all.fasta #sed -i -e 's/e-1//g' all.fasta mafft --adjustdirection --clustalout all.fasta > all.aln # MANUALLY CORRECTION! ##POLISH the assembled contigs #for sample in p953 p938 p942 p943 p944 p947 p948 p955 p954 p952 p951 p946 p945 p940; do # rm ${sample}_polished.fa # #seqtk sample ../../trimmed/${sample}_R1.fastq.gz 0.1 > ${sample}_0.1_R1.fastq # #seqtk sample ../../trimmed/${sample}_R2.fastq.gz 0.1 > ${sample}_0.1_R2.fastq # polish_viral_ref.sh -1 ../../trimmed/${sample}_R1.fastq.gz -2 ../../trimmed/${sample}_R2.fastq.gz -r ${sample}.fasta -o ${sample}_polished.fa -t 6 #done for sample in p946 p954 p952 p948 p945 p947 p955 p943 p951 p942; do #all.aln for sample in p944 p938 p953 p940; do #all2.aln for sample in p2 p3 p4 p5; do grep "${sample}" all.aln > REF${sample}.fasta #cut -f2-2 -d$'\t' REF${sample}.fasta > REF${sample}.fast sed -i -e "s/${sample} //g" REF${sample}.fasta sed -i -e "s/${sample}-1 //g" REF${sample}.fasta sed -i -e 's/-//g' REF${sample}.fasta echo ">REF${sample}" > REF${sample}.header cat REF${sample}.header REF${sample}.fasta > REF${sample}.fas seqkit seq -u REF${sample}.fas -o REF${sample}.fa cp REF${sample}.fa ${sample}.fa mv REF${sample}.fa ../.. sed -i -e "s/REF//g" ${sample}.fa #still under data/02_assembly/ done #ReferenceSeeker determines closely related reference genomes #https://github.com/oschwengers/referenceseeker (referenceseeker) jhuang@hamburg:~/DATA/Data_Holger_Efaecium$ ~/Tools/referenceseeker/bin/referenceseeker -v ~/REFs/bacteria-refseq/ shovill/noAB_wildtype/contigs.fasta # Annotating the fasta using VAPiD makeblastdb -in *.fasta -dbtype nucl python ~/Tools/VAPiD/vapid3.py --db ~/REFs/all_virus/all_virus.fasta p946R.fa ~/REFs/template_Less.sbt python ~/Tools/VAPiD/vapid3.py --db ~/REFs/all_virus/all_virus.fasta REFp944.fa ~/REFs/template_Less.sbt # KT581445.1 selected! python ~/Tools/VAPiD/vapid3.py --db ~/REFs/all_virus/all_virus.fasta contigs_final.fasta ~/REFs/template_Amir.sbt python ~/Tools/VAPiD/vapid3.py --online contigs_final.fasta ~/REFs/template_Amir.sbt
-
All packages under the viral-ngs4 env, note that novoalign is not installed. The used Novoalign path: /home/jhuang/Tools/novocraft_v3/novoalign; the used gatk: /usr/local/bin/gatk using /home/jhuang/Tools/GenomeAnalysisTK-3.6/GenomeAnalysisTK.jar (see the point 9).
mamba remove viral-ngs --all mamba remove viral-ngs-env --all conda remove viral-ngs-java7 --all conda remove viral-ngs-java8 --all conda remove viral-ngs-py36 --all conda remove viral-ngs2 --all conda remove viral-ngs3 --all jhuang@WS-2290C:~$ conda activate viral-ngs4 (viral-ngs4) jhuang@WS-2290C:~$ conda list # packages in environment at /home/jhuang/miniconda3/envs/viral-ngs4: # # Name Version Build Channel _libgcc_mutex 0.1 conda_forge conda-forge _openmp_mutex 4.5 2_gnu conda-forge _r-mutex 1.0.1 anacondar_1 conda-forge alsa-lib 1.2.3.2 h166bdaf_0 conda-forge bamtools 2.5.2 hdcf5f25_5 bioconda bedtools 2.31.1 hf5e1c6e_2 bioconda binutils_impl_linux-64 2.43 h4bf12b8_2 conda-forge binutils_linux-64 2.43 h4852527_2 conda-forge biopython 1.79 py36h8f6f2f9_0 conda-forge blast 2.6.0 boost1.64_2 bioconda bmfilter 3.101 h4ac6f70_5 bioconda bmtagger 3.101 h470a237_4 bioconda bmtool 3.101 hdbdd923_5 bioconda boost 1.64.0 py36_4 conda-forge boost-cpp 1.64.0 1 conda-forge bowtie 1.3.1 py36h769816f_3 bioconda bowtie2 2.5.4 h7071971_4 bioconda bwa 0.7.18 he4a0461_1 bioconda bwidget 1.9.14 ha770c72_1 conda-forge bzip2 1.0.8 h4bc722e_7 conda-forge c-ares 1.34.2 heb4867d_0 conda-forge ca-certificates 2024.9.24 h06a4308_0 cairo 1.16.0 h18b612c_1001 conda-forge cd-hit 4.8.1 h43eeafb_10 bioconda cd-hit-auxtools 4.8.1 h4ac6f70_3 bioconda certifi 2021.5.30 py36h5fab9bb_0 conda-forge curl 7.68.0 hf8cf82a_0 conda-forge cycler 0.11.0 pyhd8ed1ab_0 conda-forge dbus 1.13.6 hfdff14a_1 conda-forge diamond 2.1.10 h43eeafb_2 bioconda expat 2.6.4 h5888daf_0 conda-forge extract_fullseq 3.101 h4ac6f70_5 bioconda fastqc 0.12.1 hdfd78af_0 bioconda font-ttf-dejavu-sans-mono 2.37 hab24e00_0 conda-forge fontconfig 2.14.1 hef1e5e3_0 freetype 2.12.1 h267a509_2 conda-forge fribidi 1.0.10 h36c2ea0_0 conda-forge future 0.18.2 py36h5fab9bb_3 conda-forge gap2seq 2.1 boost1.64_1 bioconda gatk 3.6 hdfd78af_11 bioconda gcc_impl_linux-64 14.2.0 h6b349bd_1 conda-forge gcc_linux-64 14.2.0 h5910c8f_5 conda-forge gettext 0.22.5 he02047a_3 conda-forge gettext-tools 0.22.5 he02047a_3 conda-forge gfortran_impl_linux-64 14.2.0 hc73f493_1 conda-forge gfortran_linux-64 14.2.0 hda50785_5 conda-forge giflib 5.2.2 hd590300_0 conda-forge glib 2.66.3 h58526e2_0 conda-forge graphite2 1.3.13 h59595ed_1003 conda-forge gsl 2.4 h294904e_1006 conda-forge gst-plugins-base 1.14.5 h0935bb2_2 conda-forge gstreamer 1.14.5 h36ae1b5_2 conda-forge gxx_impl_linux-64 14.2.0 h2c03514_1 conda-forge gxx_linux-64 14.2.0 h9423afd_5 conda-forge harfbuzz 2.4.0 h37c48d4_1 conda-forge icu 58.2 hf484d3e_1000 conda-forge jpeg 9e h0b41bf4_3 conda-forge kernel-headers_linux-64 3.10.0 he073ed8_18 conda-forge keyutils 1.6.1 h166bdaf_0 conda-forge kiwisolver 1.3.1 py36h605e78d_1 conda-forge kmer-jellyfish 2.3.1 h4ac6f70_2 bioconda krb5 1.16.4 h2fd8d38_0 conda-forge last 876 py36_0 bioconda lcms2 2.12 hddcbb42_0 conda-forge ld_impl_linux-64 2.43 h712a8e2_2 conda-forge libasprintf 0.22.5 he8f35ee_3 conda-forge libasprintf-devel 0.22.5 he8f35ee_3 conda-forge libblas 3.9.0 25_linux64_openblas conda-forge libcblas 3.9.0 25_linux64_openblas conda-forge libcurl 7.68.0 hda55be3_0 conda-forge libdeflate 1.21 h4bc722e_0 conda-forge libedit 3.1.20191231 he28a2e2_2 conda-forge libev 4.33 hd590300_2 conda-forge libexpat 2.6.4 h5888daf_0 conda-forge libffi 3.2.1 he1b5a44_1007 conda-forge libgcc 14.2.0 h77fa898_1 conda-forge libgcc-devel_linux-64 14.2.0 h41c2201_101 conda-forge libgcc-ng 14.2.0 h69a702a_1 conda-forge libgettextpo 0.22.5 he02047a_3 conda-forge libgettextpo-devel 0.22.5 he02047a_3 conda-forge libgfortran-ng 7.5.0 h14aa051_20 conda-forge libgfortran4 7.5.0 h14aa051_20 conda-forge libgfortran5 14.2.0 hd5240d6_1 conda-forge libglib 2.66.3 hbe7bbb4_0 conda-forge libgomp 14.2.0 h77fa898_1 conda-forge libiconv 1.17 hd590300_2 conda-forge libidn11 1.33 h7b6447c_0 liblapack 3.9.0 25_linux64_openblas conda-forge libnghttp2 1.51.0 hdcd2b5c_0 conda-forge libnsl 2.0.1 hd590300_0 conda-forge libopenblas 0.3.28 pthreads_h94d23a6_0 conda-forge libpng 1.6.43 h2797004_0 conda-forge libsanitizer 14.2.0 h2a3dede_1 conda-forge libsqlite 3.46.0 hde9e2c9_0 conda-forge libssh2 1.10.0 haa6b8db_3 conda-forge libstdcxx 14.2.0 hc0a3c3a_1 conda-forge libstdcxx-devel_linux-64 14.2.0 h41c2201_101 conda-forge libstdcxx-ng 14.2.0 h4852527_1 conda-forge libtiff 4.2.0 hf544144_3 conda-forge libuuid 1.0.3 h7f8727e_2 libwebp-base 1.4.0 hd590300_0 conda-forge libxcb 1.17.0 h8a09558_0 conda-forge libxcrypt 4.4.36 hd590300_1 conda-forge libxml2 2.9.14 h74e7548_0 libzlib 1.2.13 h4ab18f5_6 conda-forge llvm-openmp 8.0.1 hc9558a2_0 conda-forge mafft 7.221 0 bioconda make 4.4.1 hb9d3cd8_2 conda-forge matplotlib 3.3.4 py36h5fab9bb_0 conda-forge matplotlib-base 3.3.4 py36hd391965_0 conda-forge mummer4 4.0.0rc1 pl5321hdbdd923_7 bioconda muscle 3.8.1551 h7d875b9_6 bioconda mvicuna 1.0 h4ac6f70_10 bioconda ncurses 6.5 he02047a_1 conda-forge numpy 1.19.5 py36hfc0c790_2 conda-forge olefile 0.46 pyh9f0ad1d_1 conda-forge openjdk 8.0.412 hd590300_1 conda-forge openjpeg 2.4.0 hb52868f_1 conda-forge openmp 8.0.1 0 conda-forge openssl 1.1.1w hd590300_0 conda-forge pandas 1.1.5 py36h284efc9_0 conda-forge pango 1.42.4 h7062337_4 conda-forge parallel 20240922 ha770c72_0 conda-forge pcre 8.45 h9c3ff4c_0 conda-forge perl 5.32.1 7_hd590300_perl5 conda-forge picard 3.0.0 hdfd78af_0 bioconda pigz 2.6 h27cfd23_0 pillow 8.2.0 py36ha6010c0_1 conda-forge pip 21.3.1 pyhd8ed1ab_0 conda-forge pixman 0.38.0 h516909a_1003 conda-forge prinseq 0.20.4 hdfd78af_5 bioconda pthread-stubs 0.4 hb9d3cd8_1002 conda-forge pybedtools 0.9.0 py36h7281c5b_1 bioconda pyparsing 3.1.4 pyhd8ed1ab_0 conda-forge pyqt 5.9.2 py36hcca6a23_4 conda-forge pysam 0.16.0 py36h873a209_0 bioconda python 3.6.7 h381d211_1004 conda-forge python-dateutil 2.8.2 pyhd8ed1ab_0 conda-forge python_abi 3.6 2_cp36m conda-forge pytz 2023.3.post1 pyhd8ed1ab_0 conda-forge pyyaml 5.4.1 py36h8f6f2f9_1 conda-forge qt 5.9.7 h52cfd70_2 conda-forge r-assertthat 0.2.1 r36h6115d3f_2 conda-forge r-backports 1.2.1 r36hcfec24a_0 conda-forge r-base 3.6.1 h9bb98a2_1 r-bitops 1.0_7 r36hcfec24a_0 conda-forge r-brio 1.1.2 r36hcfec24a_0 conda-forge r-callr 3.7.0 r36hc72bb7e_0 conda-forge r-catools 1.18.2 r36h03ef668_0 conda-forge r-cli 2.5.0 r36hc72bb7e_0 conda-forge r-colorspace 2.0_1 r36hcfec24a_0 conda-forge r-crayon 1.4.1 r36hc72bb7e_0 conda-forge r-desc 1.3.0 r36hc72bb7e_0 conda-forge r-diffobj 0.3.4 r36hcfec24a_0 conda-forge r-digest 0.6.27 r36h03ef668_0 conda-forge r-ellipsis 0.3.2 r36hcfec24a_0 conda-forge r-evaluate 0.14 r36h6115d3f_2 conda-forge r-fansi 0.4.2 r36hcfec24a_0 conda-forge r-farver 2.1.0 r36h03ef668_0 conda-forge r-ggplot2 3.3.3 r36hc72bb7e_0 conda-forge r-glue 1.4.2 r36hcfec24a_0 conda-forge r-gplots 3.1.1 r36hc72bb7e_0 conda-forge r-gsalib 2.1 r36_1002 conda-forge r-gtable 0.3.0 r36h6115d3f_3 conda-forge r-gtools 3.8.2 r36hcdcec82_1 conda-forge r-isoband 0.2.4 r36h03ef668_0 conda-forge r-jsonlite 1.7.2 r36hcfec24a_0 conda-forge r-kernsmooth 2.23_20 r36h742201e_0 conda-forge r-labeling 0.4.2 r36h142f84f_0 conda-forge r-lattice 0.20_44 r36hcfec24a_0 conda-forge r-lifecycle 1.0.0 r36hc72bb7e_0 conda-forge r-magrittr 2.0.1 r36hcfec24a_1 conda-forge r-mass 7.3_54 r36hcfec24a_0 conda-forge r-matrix 1.3_3 r36he454529_0 conda-forge r-mgcv 1.8_35 r36he454529_0 conda-forge r-munsell 0.5.0 r36h6115d3f_1003 conda-forge r-nlme 3.1_152 r36h859d828_0 conda-forge r-pillar 1.6.1 r36hc72bb7e_0 conda-forge r-pkgconfig 2.0.3 r36h6115d3f_1 conda-forge r-pkgload 1.2.1 r36h03ef668_0 conda-forge r-plyr 1.8.6 r36h0357c0b_1 conda-forge r-praise 1.0.0 r36h6115d3f_1004 conda-forge r-processx 3.5.2 r36hcfec24a_0 conda-forge r-ps 1.6.0 r36hcfec24a_0 conda-forge r-r6 2.5.0 r36hc72bb7e_0 conda-forge r-rcolorbrewer 1.1_2 r36h6115d3f_1003 conda-forge r-rcpp 1.0.6 r36h03ef668_0 conda-forge r-rematch2 2.1.2 r36h6115d3f_1 conda-forge r-reshape 0.8.8 r36hcdcec82_2 conda-forge r-rlang 0.4.11 r36hcfec24a_0 conda-forge r-rprojroot 2.0.2 r36hc72bb7e_0 conda-forge r-rstudioapi 0.13 r36hc72bb7e_0 conda-forge r-scales 1.1.1 r36h6115d3f_0 conda-forge r-testthat 3.0.2 r36h03ef668_0 conda-forge r-tibble 3.1.2 r36hcfec24a_0 conda-forge r-utf8 1.2.1 r36hcfec24a_0 conda-forge r-vctrs 0.3.8 r36hcfec24a_1 conda-forge r-viridislite 0.4.0 r36hc72bb7e_0 conda-forge r-waldo 0.2.5 r36hc72bb7e_0 conda-forge r-withr 2.4.2 r36hc72bb7e_0 conda-forge readline 7.0 hf8c457e_1001 conda-forge salmon 0.14.2 ha0cc327_0 bioconda samtools 1.6 h244ad75_5 bioconda setuptools 58.0.4 py36h5fab9bb_2 conda-forge sip 4.19.8 py36hf484d3e_1000 conda-forge six 1.16.0 pyh6c4a22f_0 conda-forge snpeff 4.1l hdfd78af_8 bioconda spades 3.15.5 h95f258a_1 bioconda sqlite 3.28.0 h8b20d00_0 conda-forge srprism 2.4.24 h6a68c12_5 bioconda sysroot_linux-64 2.17 h4a8ded7_18 conda-forge tbb 2020.3 hfd86e86_0 tbl2asn 25.7 h9ee0642_1 bioconda tk 8.6.13 noxft_h4845f30_101 conda-forge tktable 2.10 h8bc8fbc_6 conda-forge tornado 6.1 py36h8f6f2f9_1 conda-forge trimmomatic 0.39 hdfd78af_2 bioconda trinity 2.8.5 h8b12597_5 bioconda tzdata 2024b hc8b5060_0 conda-forge unzip 6.0 h611a1e1_0 vphaser2 2.0 h7a259b3_14 bioconda wheel 0.37.1 pyhd8ed1ab_0 conda-forge xorg-libice 1.0.10 h7f98852_0 conda-forge xorg-libsm 1.2.2 h470a237_5 conda-forge xorg-libx11 1.8.10 h4f16b4b_0 conda-forge xorg-libxau 1.0.11 hb9d3cd8_1 conda-forge xorg-libxdmcp 1.1.5 hb9d3cd8_0 conda-forge xorg-libxext 1.3.6 hb9d3cd8_0 conda-forge xorg-libxfixes 6.0.1 hb9d3cd8_0 conda-forge xorg-libxi 1.8.2 hb9d3cd8_0 conda-forge xorg-libxrender 0.9.11 hb9d3cd8_1 conda-forge xorg-libxtst 1.2.5 hb9d3cd8_3 conda-forge xorg-xorgproto 2024.1 hb9d3cd8_1 conda-forge xz 5.2.6 h166bdaf_0 conda-forge yaml 0.2.5 h7f98852_2 conda-forge zlib 1.2.13 h4ab18f5_6 conda-forge zstd 1.5.6 ha6fb4c9_0 conda-forge
-
commands of viral-ngs
bin/interhost.py Enter a subcommand to view additional information: interhost.py snpEff [...] Annotate variants in VCF file with translation consequences using snpEff. interhost.py align_mafft [...] Run the mafft alignment on the input FASTA file. interhost.py multichr_mafft [...] Run the mafft alignment on a series of chromosomes provided in sample-partitioned FASTA files. Output as FASTA. (i.e. file1.fasta would contain chr1, chr2, chr3; file2.fasta would also contain chr1, chr2, chr3) bin/ncbi.py Enter a subcommand to view additional information: ncbi.py tbl_transfer [...] This function takes an NCBI TBL file describing features on a genome(genes, etc) and transfers them to a new genome. ncbi.py tbl_transfer_prealigned [...] This breaks out the ref and alt sequences into separate fasta files, and thencreates unified files containing the reference sequence first and the alt second. Each of these unified filesis then passed as a cmap to tbl_transfer_common. This function expects to receive one fasta file containing a multialignment of a single segment/chromosome alongwith the respective reference sequence for that segment/chromosome. It also expects a reference containing allreference segments/chromosomes, so that the reference sequence can be identified in the input file by name. Italso expects a list of reference tbl files, where each file is named according to the ID present for itscorresponding sequence in the refFasta. For each non- reference sequence present in the inputFasta, two files arewritten: a fasta containing the segment/chromosome for the same, along with its corresponding feature table ascreated by tbl_transfer_common. ncbi.py fetch_fastas [...] This function downloads and saves the FASTA filesfrom the Genbank CoreNucleotide database given a given list of accession IDs. ncbi.py fetch_feature_tables [...] This function downloads and savesfeature tables from the Genbank CoreNucleotide database given a given list of accession IDs. ncbi.py fetch_genbank_records [...] This function downloads and savesfull flat text records from Genbank CoreNucleotide database given a given list of accession IDs. ncbi.py prep_genbank_files [...] Prepare genbank submission files. Requires .fasta and .tbl files as input,as well as numerous other metadata files for the submission. Creates adirectory full of files (.sqn in particular) that can be sent to GenBank. ncbi.py prep_sra_table [...] This is a very lazy hack that creates a basic table that can bepasted into various columns of an SRA submission spreadsheet. It probablydoesn't work in all cases.
-
~/Scripts/check_sequence_differences.py
#!/usr/bin/env python3 from Bio import AlignIO import sys # Check if correct arguments are provided if len(sys.argv) != 2: print("Usage: python check_sequence_differences.py
“) sys.exit(1) # Get the input file name from the command-line arguments input_file = sys.argv[1] # Read the alignment from the input CLUSTAL file alignment = AlignIO.read(input_file, “clustal”) # Extract the sequences for easy comparison seq_op = alignment[0].seq seq_hsv1 = alignment[1].seq seq_hsv_klinik = alignment[2].seq # Initialize a list to store positions with differences differences = [] # Iterate over each position in the alignment for i in range(len(seq_op)): op_base = seq_op[i] hsv1_base = seq_hsv1[i] hsv_klinik_base = seq_hsv_klinik[i] # Compare the sequences at the current position if op_base != hsv1_base or op_base != hsv_klinik_base or hsv1_base != hsv_klinik_base: differences.append((i + 1, op_base, hsv1_base, hsv_klinik_base)) # Print the differences if differences: print(“Differences found at the following positions:”) for diff in differences: pos, op_base, hsv1_base, hsv_klinik_base = diff print(f”Position {pos}: OP297860.1 = {op_base}, HSV1_S1-1 = {hsv1_base}, HSV-Klinik_S2-1 = {hsv_klinik_base}”) else: print(“No differences found between the sequences.”) -
~/Scripts/summarize_snippy_res.py
import pandas as pd import glob import argparse import os #python3 summarize_snps_indels.py snippy_HDRNA_01/snippy #The following record for 2365295 is wrong, since I am sure in the HDRNA_01_K010, it should be a 'G', since in HDRNA_01_K010.csv #CP133676,2365295,snp,A,G,G:178 A:0 # #The current output is as follows: #CP133676,2365295,A,snp,A,A,A,A,A,A,A,A,A,A,None,,,,,,None,None #CP133676,2365295,A,snp,A,A,A,A,A,A,A,A,A,A,nan,,,,,,nan,nan #grep -v "None,,,,,,None,None" summary_snps_indels.csv > summary_snps_indels_.csv #BUG: CP133676,2365295,A,snp,A,A,A,A,A,A,A,A,A,A,nan,,,,,,nan,nan import pandas as pd import glob import argparse import os def main(base_directory): # List of isolate identifiers isolates = ["HSV1_S1", "HSV-Klinik_S2"] expected_columns = ["CHROM", "POS", "REF", "ALT", "TYPE", "EFFECT", "LOCUS_TAG", "GENE", "PRODUCT"] # Find all CSV files in the directory and its subdirectories csv_files = glob.glob(os.path.join(base_directory, '**', '*.csv'), recursive=True) # Create an empty DataFrame to store the summary summary_df = pd.DataFrame() # Iterate over each CSV file for file_path in csv_files: # Extract isolate identifier from the file name isolate = os.path.basename(file_path).replace('.csv', '') df = pd.read_csv(file_path) # Ensure all expected columns are present, adding missing ones as empty columns for col in expected_columns: if col not in df.columns: df[col] = None # Extract relevant columns df = df[expected_columns] # Ensure consistent data types df = df.astype({"CHROM": str, "POS": int, "REF": str, "ALT": str, "TYPE": str, "EFFECT": str, "LOCUS_TAG": str, "GENE": str, "PRODUCT": str}) # Add the isolate column with the ALT allele df[isolate] = df["ALT"] # Drop columns that are not needed for the summary df = df.drop(["ALT"], axis=1) if summary_df.empty: summary_df = df else: summary_df = pd.merge(summary_df, df, on=["CHROM", "POS", "REF", "TYPE", "EFFECT", "LOCUS_TAG", "GENE", "PRODUCT"], how="outer") # Fill missing values with the REF allele for each isolate column for isolate in isolates: if isolate in summary_df.columns: summary_df[isolate] = summary_df[isolate].fillna(summary_df["REF"]) else: summary_df[isolate] = summary_df["REF"] # Rename columns to match the required format summary_df = summary_df.rename(columns={ "CHROM": "CHROM", "POS": "POS", "REF": "REF", "TYPE": "TYPE", "EFFECT": "Effect", "LOCUS_TAG": "Gene_name", "GENE": "Biotype", "PRODUCT": "Product" }) # Replace any remaining None or NaN values in the non-isolate columns with empty strings summary_df = summary_df.fillna("") # Add empty columns for Impact, Functional_Class, Codon_change, Protein_and_nucleotide_change, Amino_Acid_Length summary_df["Impact"] = "" summary_df["Functional_Class"] = "" summary_df["Codon_change"] = "" summary_df["Protein_and_nucleotide_change"] = "" summary_df["Amino_Acid_Length"] = "" # Reorder columns cols = ["CHROM", "POS", "REF", "TYPE"] + isolates + ["Effect", "Impact", "Functional_Class", "Codon_change", "Protein_and_nucleotide_change", "Amino_Acid_Length", "Gene_name", "Biotype"] summary_df = summary_df.reindex(columns=cols) # Remove duplicate rows summary_df = summary_df.drop_duplicates() # Save the summary DataFrame to a CSV file output_file = os.path.join(base_directory, "summary_snps_indels.csv") summary_df.to_csv(output_file, index=False) print("Summary CSV file created successfully at:", output_file) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Summarize SNPs and Indels from CSV files.") parser.add_argument("directory", type=str, help="Base directory containing the CSV files in subdirectories.") args = parser.parse_args() main(args.directory)
-
~/Scripts/merge_snps_indels.py
import pandas as pd import argparse import os def merge_files(input_file1, input_file2, output_file): # Read the input files df1 = pd.read_csv(input_file1) df2 = pd.read_csv(input_file2, sep='\t') # Merge the dataframes on the 'POS' column, keeping only the rows that have common 'POS' values merged_df = pd.merge(df2, df1[['POS']], on='POS', how='inner') # Remove duplicate rows merged_df.drop_duplicates(inplace=True) # Save the merged dataframe to the output file merged_df.to_csv(output_file, index=False) print("Merged file created successfully at:", output_file) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Merge two SNP and Indel files based on the 'POS' column.") parser.add_argument("input_file1", type=str, help="Path to the first input file (summary_snps_indels.csv).") parser.add_argument("input_file2", type=str, help="Path to the second input file (All_SNPs_indels_annotated.txt).") parser.add_argument("output_file", type=str, help="Path to the output file.") args = parser.parse_args() merge_files(args.input_file1, args.input_file2, args.output_file)
-
~/Scripts/convert_fasta_to_clustal.py
#!/usr/bin/env python3 from Bio import AlignIO import sys # Check if the correct number of arguments is provided if len(sys.argv) != 3: print("Usage: python convert_fasta_to_clustal.py
“) sys.exit(1) # Get the input and output file names from command-line arguments input_file = sys.argv[1] output_file = sys.argv[2] # Read the input FASTA file alignment = AlignIO.read(input_file, “fasta”) # Write the alignment to the output CLUSTAL file with open(output_file, “w”) as out_file: AlignIO.write(alignment, out_file, “clustal”) print(f”Conversion complete! The CLUSTAL file is saved as {output_file}.”) -
~/Scripts/convert_clustal_to_clustal.py
#!/usr/bin/env python3 from Bio import AlignIO import sys # Check if correct arguments are provided if len(sys.argv) != 3: print("Usage: python convert_clustal_to_fasta.py
“) sys.exit(1) # Get the input and output file names from command-line arguments input_file = sys.argv[1] output_file = sys.argv[2] # Read the CLUSTAL alignment alignment = AlignIO.read(input_file, “clustal”) # Extract sequences (assuming three sequences) op_seq = alignment[0].seq hsv1_seq = alignment[1].seq hsv_klinik_seq = alignment[2].seq # Make sure the sequences have the same length if len(op_seq) != len(hsv1_seq) or len(op_seq) != len(hsv_klinik_seq): print(“Error: Sequences have different lengths!”) sys.exit(1) # Prepare new sequences for HSV1 and HSV-Klinik new_hsv1_seq = [] new_hsv_klinik_seq = [] # Iterate through each position of the sequences for i in range(len(op_seq)): op_base = op_seq[i] hsv1_base = hsv1_seq[i] hsv_klinik_base = hsv_klinik_seq[i] # Apply the rules for replacing bases in HSV1_S1-1 and HSV-Klinik_S2-1 if hsv1_base in [‘N’, ‘-‘]: # Replace with OP297860.1 base new_hsv1_seq.append(op_base) else: # Otherwise, keep the original base new_hsv1_seq.append(hsv1_base) if hsv_klinik_base in [‘N’, ‘-‘]: # Replace with OP297860.1 base new_hsv_klinik_seq.append(op_base) else: # Otherwise, keep the original base new_hsv_klinik_seq.append(hsv_klinik_base) # Update the sequences in the alignment alignment[1].seq = “”.join(new_hsv1_seq) alignment[2].seq = “”.join(new_hsv_klinik_seq) # Write the modified alignment back to a file in CLUSTAL format with open(output_file, “w”) as out_file: AlignIO.write(alignment, out_file, “clustal”) print(f”Conversion complete! The modified CLUSTAL file is saved as {output_file}.”) -
~/Scripts/convert_clustal_to_fasta.py
#!/usr/bin/env python3 from Bio import AlignIO import sys # Check if the correct number of arguments is provided if len(sys.argv) != 3: print("Usage: python convert_clustal_to_fasta.py
“) sys.exit(1) # Get the input and output file names from command-line arguments input_file = sys.argv[1] output_file = sys.argv[2] # Read the input CLUSTAL file alignment = AlignIO.read(input_file, “clustal”) # Write the alignment to the output FASTA file with open(output_file, “w”) as out_file: AlignIO.write(alignment, out_file, “fasta”) print(f”Conversion complete! The FASTA file is saved as {output_file}.”) -
~/Scripts/filter_isnv.py
#!/usr/bin/env python3 import sys import pandas as pd # Check for correct command-line arguments if len(sys.argv) != 3: print("Usage: python filter_isnv.py
“) sys.exit(1) input_file = sys.argv[1] min_freq = float(sys.argv[2]) # Load the data into a pandas DataFrame data = pd.read_csv(input_file, sep=’\t’) # Filter out records where all records at the same position have iSNV_freq < min_freq def filter_isnv(data, min_freq): # Group data by 'chr' and 'pos' to check records at each position grouped = data.groupby(['chr', 'pos']) # Keep groups where at least one record has iSNV_freq >= min_freq filtered_data = grouped.filter(lambda x: any(x[‘iSNV_freq’] >= min_freq)) return filtered_data # Apply the filter filtered_data = filter_isnv(data, min_freq) # Output the filtered data output_file = “filtered_” + input_file filtered_data.to_csv(output_file, sep=’\t’, index=False) print(f”Filtered data saved to {output_file}”)
Updated List of nf-core Pipelines (Released) Sorted by Stars (as of November 22, 2024)
Released
-
rnaseq: RNA sequencing analysis pipeline using STAR, RSEM, HISAT2, or Salmon with gene/isoform counts and extensive quality control (921 stars).
-
sarek: Analysis pipeline to detect germline or somatic variants from WGS/targeted sequencing (410 stars).
-
mag: Assembly and binning of metagenomes (217 stars).
-
scrnaseq: Single-cell RNA-seq pipeline for 10X genomics data (214 stars).
-
chipseq: ChIP-seq peak-calling, QC, and differential analysis pipeline (195 stars).
-
ampliseq: Amplicon sequencing analysis using DADA2 and QIIME2 (188 stars).
-
atacseq: ATAC-seq peak-calling and QC analysis pipeline (188 stars).
-
naoseq: Nanopore demultiplexing, QC, and alignment pipeline (180 stars).
-
fetchngs: Fetch metadata and raw FastQ files from public databases (151 stars).
-
eager: Ancient DNA analysis pipeline (148 stars).
-
rnafusion: RNA-seq analysis for gene-fusion detection (144 stars).
-
methylseq: Methylation analysis pipeline with Bismark or bwa-meth (140 stars).
-
taxprofiler: Multi-taxonomic profiling of metagenomic data (128 stars).
-
viralrecon: Viral assembly and intrahost variant calling (125 stars).
-
hic: Chromosome Conformation Capture data analysis (92 stars).
-
raredisease: Variant analysis for rare disease patients (90 stars).
-
cutandrun: Analysis pipeline for CUT&RUN and CUT&TAG experiments (81 stars).
-
pangenome: Renders sequences into a pangenome graph (78 stars).
-
smrnaseq: Small-RNA sequencing analysis pipeline (74 stars).
-
funcscan: Genome screening for functional and natural product gene sequences (74 stars).
-
differentialabundance: Differential abundance analysis (64 stars).
-
bacass: Bacterial assembly and annotation pipeline (63 stars).
-
hlatyping: HLA typing from NGS data (63 stars).
-
proteinfold: Protein 3D structure prediction pipeline (58 stars).
-
airrflow: Adaptive Immune Receptor Repertoire sequencing analysis (54 stars).
-
bactmap: Phylogeny from bacterial genomes (52 stars).
-
oncoanalyser: Cancer DNA/RNA analysis pipeline (50 stars).
-
rnasplice: RNA-seq alternative splicing analysis (46 stars).
-
demultiplex: Demultiplexing pipeline for sequencing data (44 stars).
-
epitopeprediction: Epitope prediction and annotation pipeline (42 stars).
-
rnavar: RNA variant calling pipeline (37 stars).
-
mhcquant: Quantify MHC-eluted peptides from mass spectrometry data (33 stars).
-
proteomicslfq: Proteomics label-free quantification pipeline (33 stars).
-
crisprseq: Analyze CRISPR edited data (31 stars).
-
isoseq: PacBio Iso-Seq genome annotation (29 stars).
-
circdna: Detect extrachromosomal circular DNA (28 stars).
-
readsimulator: Simulate sequencing reads (27 stars).
-
imcyto: Image Mass Cytometry analysis (25 stars).
-
multiplesequencealign: Multiple Sequence Alignment pipeline (22 stars).
-
bamtofastq: Convert BAM/CRAM to FastQ (22 stars).
-
metatdenovo: De novo assembly for metagenomics data (22 stars).
-
scnanoseq: Single-cell/nuclei pipeline with Nanopore data (21 stars).
Under development
- spatialvi: Spatially-resolved gene counts for 10x Genomics Visium (52 stars).
- circrna: Quantify circRNA, differential expression, and miRNA target prediction (45 stars).
- scdownstream: Single-cell transcriptomics QC, integration, and visualization (41 stars).
- lncpipe: Long non-coding RNA analysis from RNA-seq data (under development) (33 stars).
- deepmodeloptim: Optimizes deep learning models for genomic applications (23 stars).
- gwas: Genome Wide Association Studies pipeline (under construction) (22 stars).
- genomeannotator: Gene structure identification in draft genomes (18 stars).
- phaseimpute: Phases and imputes genetic data (17 stars).
- genomeassembler: Genome assembly pipeline (16 stars).
- pathogensurveillance: Population genomics for pathogen monitoring (13 stars).
- variantbenchmarking: Benchmarking for variant-calling pipelines (premature) (12 stars).
- omicsgenetraitassociation: Multi-omic data integration for trait analysis (10 stars).
- phageannotator: Identifies and annotates phage sequences in metagenomic data (10 stars).
- tfactivity: Differentially active transcription factor identification (9 stars).
- createpanelrefs: Generate reference panels from sample datasets (8 stars).
- datasync: Automation and system operation tasks (8 stars).
- mcmicro: Processes multi-channel whole-slide images into single-cell data (8 stars).
- metapep: Processes metagenomes to epitopes and beyond (8 stars).
- variantcatalogue: Creates variant catalogues for populations (8 stars).
- tbanalyzer: Analysis pipeline for Mycobacterium tuberculosis complex (7 stars).
- radseq: Variant-calling for RADseq sequencing data (6 stars).
- meerpipe: Processes MeerKAT pulsar data for astronomy applications (5 stars).
- rnadnavar: RNA and DNA integration for somatic mutation detection (5 stars).
- spatialxe: (Details not specified) (5 stars).
- drugresponseeval: Evaluates drug-response prediction models (4 stars).
- rangeland: Analyzes satellite imagery for land-cover trends (4 stars).
- genomeqc: Compares genome quality and annotations (3 stars).
- methylarray: Processes Illumina methylation data (3 stars).
- spinningjenny: Simulates industrial revolution with agent-based models (2 stars).
- troughgraph: Quantitative permafrost landscape analysis (2 stars).
- pacvar: Processes PacBio sequencing for WGS and targeted data (updated 12 hrs ago) (1 star).
- sammyseq: Analyzes chromatin accessibility with SAMMY-seq data (1 star).
- fastqrepair: Repairs and reorders corrupted FASTQ.gz files (0 stars).
Archived
- deepvariant: Variant calling pipeline leveraging Google’s DeepVariant (40 stars).
- quantms: Quantitative mass spectrometry workflow supporting DDA-LFQ, DDA-Isobaric, and DIA-LFQ (31 stars).
- scflow: RNA-seq analysis for single-cell and single-nuclei data (recommended: nf-core/scdownstream) (23 stars).
- exoseq: Exome sequencing and variant calling pipeline (recommended: nf-core/sarek) (16 stars).
- smartseq2: Processes single-cell RNA-seq data from the SmartSeq2 protocol (15 stars).
- vipr: Viral genome assembly and low-frequency variant calling (14 stars).
- denovohybrid: Hybrid genome assembly combining long and short reads (under construction) (8 stars).
- crisprvar: Evaluates genome editing experiment outcomes (WIP) (5 stars).
- ddamsproteomics: Quantitative shotgun mass spectrometry for proteomics (4 stars).
- neutronstar: De novo assembly pipeline for 10X linked-reads using Supernova (3 stars).
- ssds: Single-stranded DNA sequencing pipeline (1 star).
- liverctanalysis: Pipeline for liver CT image analysis (under construction) (0 stars).
Die 5 wichtigsten Versicherungen für Hausbesitzer
https://www.dieversicherer.de/versicherer/wohnen/news/versicherungen-fuer-hausbesitzer-144090
- Die Wohngebäudeversicherung: Ein Muss für jeden Hausbesitzer
- Elementarschadenversicherung: Extremwetter nehmen zu
- Haftpflicht für Hausbesitzer: Wer genau benötigt eine Haus- und Grundbesitzerhaftpflichtversicherung?
- Besitzer/Eigentümer von Mehrfamilienhäusern
- Vermieter von Einfamilienhäusern
- Besitzer/Eigentümer unbebauter Grundstücke
- Besitzer/Eigentümer von Einfamilienhäusern mit Einliegerwohnungen. Der Versicherungsschutz durch die private Haftpflicht besteht nämlich nur, wenn das Einfamilienhaus bis auf drei Räume vom Versicherungsnehmer selbst genutzt wird. Andernfalls braucht der Eigentümer eine Haus- und Grundbesitzerhaftpflicht.
- Wohnungseigentümer von Gebäuden, die für eine Eigentümergemeinschaft errichtet worden sind. Die Haftpflichtversicherung des Wohnungseigentümers deckt nur die Gefahren, die von der Wohnung, dem zugehörigen Kellerraum und dem eventuell vorhandenen abgegrenzten Parkplatz ausgehen.
- Die Hausratversicherung:
- Zusätzlicher Schutz für Photovoltaikanlagen, Scheiben (Glasbruchversicherung), Öltanks
Transposon analyses for the nanopore sequencing
-
install mambaforge https://conda-forge.org/miniforge/ (recommended)
#download Mambaforge-24.9.2-0-Linux-x86_64.sh from website chmod +x Mambaforge-24.9.2-0-Linux-x86_64.sh ./Mambaforge-24.9.2-0-Linux-x86_64.sh To activate this environment, use: micromamba activate /home/jhuang/mambaforge Or to execute a single command in this environment, use: micromamba run -p /home/jhuang/mambaforge mycommand installation finished. Do you wish to update your shell profile to automatically initialize conda? This will activate conda on startup and change the command prompt when activated. If you'd prefer that conda's base environment not be activated on startup, run the following command when conda is activated: conda config --set auto_activate_base false You can undo this by running `conda init --reverse $SHELL`? [yes|no] [no] >>> yes no change /home/jhuang/mambaforge/condabin/conda no change /home/jhuang/mambaforge/bin/conda no change /home/jhuang/mambaforge/bin/conda-env no change /home/jhuang/mambaforge/bin/activate no change /home/jhuang/mambaforge/bin/deactivate no change /home/jhuang/mambaforge/etc/profile.d/conda.sh no change /home/jhuang/mambaforge/etc/fish/conf.d/conda.fish no change /home/jhuang/mambaforge/shell/condabin/Conda.psm1 no change /home/jhuang/mambaforge/shell/condabin/conda-hook.ps1 no change /home/jhuang/mambaforge/lib/python3.12/site-packages/xontrib/conda.xsh no change /home/jhuang/mambaforge/etc/profile.d/conda.csh modified /home/jhuang/.bashrc ==> For changes to take effect, close and re-open your current shell. <== no change /home/jhuang/mambaforge/condabin/conda no change /home/jhuang/mambaforge/bin/conda no change /home/jhuang/mambaforge/bin/conda-env no change /home/jhuang/mambaforge/bin/activate no change /home/jhuang/mambaforge/bin/deactivate no change /home/jhuang/mambaforge/etc/profile.d/conda.sh no change /home/jhuang/mambaforge/etc/fish/conf.d/conda.fish no change /home/jhuang/mambaforge/shell/condabin/Conda.psm1 no change /home/jhuang/mambaforge/shell/condabin/conda-hook.ps1 no change /home/jhuang/mambaforge/lib/python3.12/site-packages/xontrib/conda.xsh no change /home/jhuang/mambaforge/etc/profile.d/conda.csh no change /home/jhuang/.bashrc No action taken. WARNING conda.common.path.windows:_path_to(100): cygpath is not available, fallback to manual path conversion WARNING conda.common.path.windows:_path_to(100): cygpath is not available, fallback to manual path conversion Added mamba to /home/jhuang/.bashrc ==> For changes to take effect, close and re-open your current shell. <== Thank you for installing Mambaforge! Close your terminal window and open a new one, or run: #source ~/mambaforge/bin/activate conda --version mamba --version https://github.com/conda-forge/miniforge/releases Note * After installation, please make sure that you do not have the Anaconda default channels configured. conda config --show channels conda config --remove channels defaults conda config --add channels conda-forge conda config --show channels conda config --set channel_priority strict #conda clean --all conda config --remove channels biobakery * !!!!Do not install anything into the base environment as this might break your installation. See here for details.!!!! # --Deprecated method: mamba installing on conda-- #conda install -n base --override-channels -c conda-forge mamba 'python_abi=*=*cp*' # * Note that installing mamba into any other environment than base is not supported. # #conda activate base #conda install conda #conda uninstall mamba #conda install mamba
2: install required Tools on the mamba env
* Sniffles2: Detect structural variants, including transposons, from long-read alignments.
* RepeatModeler2: Identify and classify transposons de novo.
* RepeatMasker: Annotate known transposable elements using transposon libraries.
* SVIM: An alternative structural variant caller optimized for long-read sequencing, if needed.
* SURVIVOR: Consolidate structural variants across samples for comparative analysis.
mamba deactivate
# Create a new conda environment
mamba create -n transposon_long python=3.6 -y
# Activate the environment
mamba activate transposon_long
mamba install -c bioconda sniffles
mamba install -c bioconda repeatmodeler repeatmasker
# configure repeatmasker database
mamba info --envs
cd /home/jhuang/mambaforge/envs/transposon_long/share/RepeatMasker
#mamba install python=3.6
mamba install -c bioconda svim
mamba install -c bioconda survivor
-
Configuring RepeatMasker after installation involves setting up a transposable element (TE) database, such as Dfam or RepBase. Here’s a detailed guide:
1. Locate the RepeatMasker Directory After installing RepeatMasker (via Conda or manually), the main program will reside in its installation directory. conda info --envs #Locate the path for your environment (transposon_analysis), and then: cd /home/jhuang/mambaforge/envs/transposon_long/share/RepeatMasker 2. Install and choose a TE Database Dfam: A freely available TE database. Preferred for most users due to open access. cd /mnt/nvme0n1p1/ref #Download the Preprocessed Library: wget https://www.dfam.org/releases/Dfam_3.8/families/Dfam-RepeatMasker.lib.gz #Move the File to RepeatMasker Libraries: mv Dfam-RepeatMasker.lib.gz /home/jhuang/mambaforge/envs/transposon_long/share/RepeatMasker/Libraries/ #Configure RepeatMasker to Use Dfam: Re-run the RepeatMasker configuration script and specify this library. # Move Dfam data to the RepeatMasker directory mv Dfam.h5 /path/to/RepeatMasker/Libraries/ mv Dfam.embl /path/to/RepeatMasker/Libraries/ # The Dfam library has been already installed. RepBase: A more comprehensive TE database but requires a license for academic or commercial use. Download the library files (e.g., .tar.gz) provided by RepBase. Extract them to the directory of your choice. https://www.girinst.org/server/RepBase/index.php tar -zxvf repbase_library.tar.gz -C /path/to/repbase/ 4. Configure RepeatMasker #Run the configuration script in the RepeatMasker installation directory: cd /home/jhuang/mambaforge/envs/transposon_long/share/RepeatMasker ./configure Enter Selection: 5 Building FASTA version of RepeatMasker.lib ......... Building RMBlast frozen libraries.. The program is installed with a the following repeat libraries: File: /home/jhuang/mambaforge/envs/transposon_long/share/RepeatMasker/Libraries/Dfam.h5 Database: Dfam Version: 3.3 Date: 2020-11-09 Dfam - A database of transposable element (TE) sequence alignments and HMMs. Total consensus sequences: 6953 Total HMMs: 6915 conda activate transposon_long #When using HMMER with RepeatMasker, it automatically looks for the Dfam.h5 file in the Libraries/ directory, not a custom library name specified with -lib. #If you're using HMMER and the Dfam.h5 file, the -lib option should not be used. Simply run RepeatMasker like this: RepeatMasker -species "YourSpecies" -pa 4 CP020463.fasta
-
Test the installed tools
# Check versions sniffles --version RepeatModeler -h RepeatMasker -h svim --help SURVIVOR --help mamba install -c conda-forge perl r
-
Align Long Reads to the WT Reference
Use Minimap2 for aligning your reads: for sample in 1 2 3 4 5 7 8 9 10; do for sample in WT; do minimap2 --MD -t 60 -ax map-ont CP020463.fasta ./batch1_depth25/trycycler_${sample}/reads.fastq | samtools sort -o ${sample}.sorted.bam samtools index ${sample}.sorted.bam done
-
Call Structural Variants with Sniffles2: A fast structural variant caller for long-read sequencing, Sniffles2 accurately detect SVs on germline, somatic and population-level for PacBio and Oxford Nanopore read data.
Detect structural variants in each sample using Sniffles2: sniffles -m WT.sorted.bam -v WT.vcf -s 10 -l 50 -t 60 -s 20: Requires at least 20 reads to support an SV for reporting. -l 50: Reports SVs that are at least 50 base pairs long. -t 4: Uses 4 threads for faster processing. for sample in WT 1 2 3 4 5 7 8 9 10; do minimap2 --MD -t 60 -ax map-ont CP020463.fasta ./batch1_depth25/trycycler_${sample}/reads.fastq | samtools sort -o ${sample}.sorted.bam samtools index ${sample}.sorted.bam sniffles -m ${sample}.sorted.bam -v ${sample}.vcf -s 10 -l 50 -t 60 done for sample in WT 1 2 3 4 5 7 8 9 10; do bcftools filter -e "QUAL < 20 || INFO/SVTYPE != 'INS'" ${sample}.vcf > ${sample}_filtered.vcf done #!!!!WT has only one record as expected!!!!
-
Annotate Transposable Elements
Build a Custom Transposon Library (Optional but Recommended): Use RepeatModeler2 to identify and classify transposable elements in your WT genome. makeblastdb -in CP020463.fasta -dbtype nucl -out CP020463_db -parse_seqids blastdbcmd -db CP020463_db -info RepeatModeler -database CP020463_db -pa 8 #esearch -db nucleotide -query "CP020463" | efetch -format gb | grep -A 1 "translation" > CP020463_proteins.fasta #awk '{if(NR%2==1){print ">acc"NR/2} else {print $0}}' CP020463.protein.faa > CP020463_with_accessions.faa #TODO: DEBUG_NEXT_MONDAY! makeblastdb -in CP020463.protein.faa -dbtype prot -out CP020463_protein_db blastdbcmd -db CP020463_protein_db -info RepeatModeler -database CP020463_protein_db -pa 8 This creates a transposon library in FASTA format. Annotate Insertions with RepeatMasker: Use the transposon library (or a database like Dfam) to annotate the detected insertions: RepeatMasker -lib transposons.fasta sample1.vcf -dir output/ This step determines if detected insertions match known or de novo transposons.
-
Compare Insertions Across Samples
Merge Variants Across Samples: Use SURVIVOR to merge and compare the detected insertions in all samples against the WT: SURVIVOR merge input_vcfs.txt 1000 1 1 1 0 30 merged.vcf Input: List of VCF files from Sniffles2. Output: A consolidated VCF file with shared and unique variants. Filter WT Insertions: Identify transposons present only in samples 1–9 by subtracting WT variants using bcftools: bcftools isec WT.vcf merged.vcf -p comparison_results
-
Validate and Visualize
Visualize with IGV: Use IGV to inspect insertion sites in the alignment and confirm quality. igv.sh Validate Findings: Perform PCR or additional sequencing for key transposon insertion sites to confirm results.
-
Alternatives to TEPID for Long-Read Data
If you’re looking for transposon-specific tools for long reads: REPET: A robust transposon annotation tool compatible with assembled genomes. EDTA (Extensive de novo TE Annotator): A pipeline to identify, classify, and annotate transposons. Works directly on your assembled genomes. perl EDTA.pl --genome WT.fasta --type all
-
The WT.vcf file in the pipeline is generated by detecting structural variants (SVs) in the wild-type (WT) genome aligned against itself or using it as a baseline reference. Here’s how you can generate the WT.vcf:
Steps to Generate WT.vcf 1. Align WT Reads to the WT Reference Genome The goal here is to create an alignment of the WT sequencing data to the WT reference genome to detect any self-contained structural variations, such as native insertions, deletions, or duplications. Command using Minimap2: minimap2 -ax map-ont WT.fasta WT_reads.fastq | samtools sort -o WT.sorted.bam Index the BAM file: samtools index WT.sorted.bam 2. Detect Structural Variants with Sniffles2 Run Sniffles2 on the WT alignment to call structural variants: sniffles --input WT.sorted.bam --vcf WT.vcf This step identifies: Native transposons and insertions present in the WT genome. Other structural variants that are part of the reference genome or sequencing artifacts. Key parameters to consider: --min_support: Adjust based on your WT sequencing coverage. --max_distance: Define proximity for merging variants. --min_length: Set a minimum SV size (e.g., >50 bp for transposons).
-
Clean and Filter the WT.vcf
To ensure the WT.vcf only includes relevant transposons or SVs: Use bcftools or similar tools to filter out low-confidence variants: bcftools filter -e "QUAL < 20 || INFO/SVTYPE != 'INS'" WT.vcf > WT_filtered.vcf This removes low-quality calls and focuses on insertions (INS) relevant for transposon detection. Optionally, annotate the WT.vcf with known transposons using tools like RepeatMasker. The WT.vcf acts as a baseline for comparison: Variants detected in your samples 1–9 are compared to those in the WT to identify novel insertions (potential transposons). Shared insertions between the WT and samples are excluded as native to the WT genome.
-
In this pipeline, the WT.fasta (reference genome) is typically a high-quality genome sequence from a database or a well-annotated version of your species’ genome. It is not assembled from the WT.fastq sequencing reads in this context. Here’s why:
Why Use a Reference Genome (WT.fasta) from a Database? Higher Quality and Completeness: Database references (e.g., NCBI, Ensembl) are typically well-assembled, highly polished, and annotated. They serve as a reliable baseline for variant detection. Consistency: Using a standard reference ensures consistent comparisons across your WT and samples (1–9). Variants detected will be relative to this reference, not influenced by possible assembly errors. Saves Time: Assembling a reference genome from WT reads requires significant computational effort. Using an existing reference streamlines the analysis. Alternative: Assembling WT from FASTQ If you don’t have a high-quality reference genome (WT.fasta) and must rely on your WT FASTQ reads: Assemble the genome from your WT.fastq: Use long-read assemblers like Flye, Canu, or Shasta to create a draft genome. flye --nano-raw WT.fastq --out-dir WT_assembly --genome-size
Polish the assembly using tools like Racon (with the same reads) or Medaka for higher accuracy. Use the assembled and polished genome as your WT.fasta reference for further steps. Key Takeaways: If you have access to a reliable, high-quality reference genome, use it as the WT.fasta. Only assemble WT.fasta from raw reads (WT.fastq) if no database reference is available for your organism.
Structural Variant Calling for Nanopore Sequencing (edited)
-
install mambaforge https://conda-forge.org/miniforge/ (recommended)
#download Mambaforge-24.9.2-0-Linux-x86_64.sh from website chmod +x Mambaforge-24.9.2-0-Linux-x86_64.sh ./Mambaforge-24.9.2-0-Linux-x86_64.sh To activate this environment, use: micromamba activate /home/jhuang/mambaforge Or to execute a single command in this environment, use: micromamba run -p /home/jhuang/mambaforge mycommand installation finished. Do you wish to update your shell profile to automatically initialize conda? This will activate conda on startup and change the command prompt when activated. If you'd prefer that conda's base environment not be activated on startup, run the following command when conda is activated: conda config --set auto_activate_base false You can undo this by running `conda init --reverse $SHELL`? [yes|no] [no] >>> yes no change /home/jhuang/mambaforge/condabin/conda no change /home/jhuang/mambaforge/bin/conda no change /home/jhuang/mambaforge/bin/conda-env no change /home/jhuang/mambaforge/bin/activate no change /home/jhuang/mambaforge/bin/deactivate no change /home/jhuang/mambaforge/etc/profile.d/conda.sh no change /home/jhuang/mambaforge/etc/fish/conf.d/conda.fish no change /home/jhuang/mambaforge/shell/condabin/Conda.psm1 no change /home/jhuang/mambaforge/shell/condabin/conda-hook.ps1 no change /home/jhuang/mambaforge/lib/python3.12/site-packages/xontrib/conda.xsh no change /home/jhuang/mambaforge/etc/profile.d/conda.csh modified /home/jhuang/.bashrc ==> For changes to take effect, close and re-open your current shell. <== no change /home/jhuang/mambaforge/condabin/conda no change /home/jhuang/mambaforge/bin/conda no change /home/jhuang/mambaforge/bin/conda-env no change /home/jhuang/mambaforge/bin/activate no change /home/jhuang/mambaforge/bin/deactivate no change /home/jhuang/mambaforge/etc/profile.d/conda.sh no change /home/jhuang/mambaforge/etc/fish/conf.d/conda.fish no change /home/jhuang/mambaforge/shell/condabin/Conda.psm1 no change /home/jhuang/mambaforge/shell/condabin/conda-hook.ps1 no change /home/jhuang/mambaforge/lib/python3.12/site-packages/xontrib/conda.xsh no change /home/jhuang/mambaforge/etc/profile.d/conda.csh no change /home/jhuang/.bashrc No action taken. WARNING conda.common.path.windows:_path_to(100): cygpath is not available, fallback to manual path conversion WARNING conda.common.path.windows:_path_to(100): cygpath is not available, fallback to manual path conversion Added mamba to /home/jhuang/.bashrc ==> For changes to take effect, close and re-open your current shell. <== Thank you for installing Mambaforge! Close your terminal window and open a new one, or run: #source ~/mambaforge/bin/activate conda --version mamba --version https://github.com/conda-forge/miniforge/releases Note * After installation, please make sure that you do not have the Anaconda default channels configured. conda config --show channels conda config --remove channels defaults conda config --add channels conda-forge conda config --show channels conda config --set channel_priority strict #conda clean --all conda config --remove channels biobakery * !!!!Do not install anything into the base environment as this might break your installation. See here for details.!!!! # --Deprecated method: mamba installing on conda-- #conda install -n base --override-channels -c conda-forge mamba 'python_abi=*=*cp*' # * Note that installing mamba into any other environment than base is not supported. # #conda activate base #conda install conda #conda uninstall mamba #conda install mamba
2: install required Tools on the mamba env
* Sniffles2: Detect structural variants, including transposons, from long-read alignments.
* RepeatModeler2: Identify and classify transposons de novo.
* RepeatMasker: Annotate known transposable elements using transposon libraries.
* SVIM: An alternative structural variant caller optimized for long-read sequencing, if needed.
* SURVIVOR: Consolidate structural variants across samples for comparative analysis.
mamba deactivate
# Create a new conda environment
mamba create -n transposon_long python=3.6 -y
# Activate the environment
mamba activate transposon_long
mamba install -c bioconda sniffles
mamba install -c bioconda repeatmodeler repeatmasker
# configure repeatmasker database
mamba info --envs
cd /home/jhuang/mambaforge/envs/transposon_long/share/RepeatMasker
#mamba install python=3.6
mamba install -c bioconda svim
mamba install -c bioconda survivor
-
Test the installed tools
# Check versions sniffles --version RepeatModeler -h RepeatMasker -h svim --help SURVIVOR --help mamba install -c conda-forge perl r
-
Data Preparation
Raw Signal Data: Nanopore devices generate electrical signal data as DNA passes through the nanopore. Basecalling: Tools like Guppy or Dorado are used to convert raw signals into nucleotide sequences (FASTQ files).
-
Preprocessing
Quality Filtering: Remove low-quality reads using tools like Filtlong or NanoFilt. Adapter Trimming: Identify and remove sequencing adapters with tools like Porechop.
-
(Optional) Variant Calling for SNP and Indel Detection:
Tools like Medaka, Longshot, or Nanopolish analyze the aligned reads to identify SNPs and small indels.
-
Alignment and Structural Variant Calling: Tools such as Sniffles or SVIM detect large insertions, deletions, and other structural variants. 使用长读长测序工具如 SVIM 或 Sniffles 检测结构变异(e.g. 散在性重复序列)。
#NOTE that the ./batch1_depth25/trycycler_WT/reads.fastq and F24A430001437_BACctmoD/BGI_result/Separate/${sample}/1.Cleandata/${sample}.filtered_reads.fq.gz are the same! ./4/1.Cleandata/4.filtered_reads.fq.gz ./3/1.Cleandata/3.filtered_reads.fq.gz ./2/1.Cleandata/2.filtered_reads.fq.gz ./8/1.Cleandata/8.filtered_reads.fq.gz ./5/1.Cleandata/5.filtered_reads.fq.gz ./WT/1.Cleandata/WT.filtered_reads.fq.gz ./9/1.Cleandata/9.filtered_reads.fq.gz ./10/1.Cleandata/10.filtered_reads.fq.gz ./7/1.Cleandata/7.filtered_reads.fq.gz ./1/1.Cleandata/1.filtered_reads.fq.gz # -- Alignment and Detect structural variants in each sample using SVIM (failed due to the strange output from SVIM!) #mamba install -c bioconda ngmlr mamba install -c bioconda svim for sample in WT 1 2 3 4 5 7 8 9 10; do svim reads --aligner ngmlr --nanopore svim_reads_ngmlr_${sample} F24A430001437_BACctmoD/BGI_result/Separate/${sample}/1.Cleandata/${sample}.filtered_reads.fq.gz CP020463.fasta --cores 10; done for sample in WT 1 2 3 4 5 7 8 9 10; do for sample in 1; do #INS,INV,DUP:TANDEM,DUP:INT,BND svim reads svim_reads_minimap2_${sample} F24A430001437_BACctmoD/BGI_result/Separate/${sample}/1.Cleandata/${sample}.filtered_reads.fq.gz CP020463.fasta --aligner minimap2 --nanopore --cores 20 --types INS --min_sv_size 100 --sequence_allele --insertion_sequences --read_names; done #svim alignment svim_alignment_minmap2_1_re 1.sorted.bam CP020463_.fasta --types INS --sequence_alleles --insertion_sequences --read_names # -- Results1: Detect structural variants using Minamap2+Sniffles2: Minimap2: A commonly used aligner for nanopore sequencing data. Align Long Reads to the WT Reference using Minimap2 for sample in WT 1 2 3 4 5 7 8 9 10; do minimap2 --MD -t 60 -ax map-ont CP020463.fasta ./batch1_depth25/trycycler_${sample}/reads.fastq | samtools sort -o ${sample}.sorted.bam samtools index ${sample}.sorted.bam done #sniffles -m WT.sorted.bam -v WT.vcf -s 10 -l 50 -t 60 # -s 20: Requires at least 20 reads to support an SV for reporting. --> 10 # -l 50: Reports SVs that are at least 50 base pairs long. # -t 4: Uses 4 threads for faster processing. --> 60 for sample in WT 1 2 3 4 5 7 8 9 10; do sniffles -m ${sample}.sorted.bam -v ${sample}.vcf -s 10 -l 50 -t 60 #QUAL < 20 || bcftools filter -e "INFO/SVTYPE != 'INS'" ${sample}.vcf > ${sample}_filtered.vcf done # -- Results2: Detect structural variants using NGMLR+Sniffles2 for sample in WT 1 2 3 4 5 7 8 9 10; do #ERROR: No MD string detected! Check bam file! Otherwise generate using e.g. samtools. --> No results! #sniffles -m svim_reads_minimap2_${sample}/${sample}.filtered_reads.fq.minimap2.coordsorted.bam -v #sniffles_minimap2_${sample}.vcf -s 10 -l 50 -t 60 bcftools filter -e "INFO/SVTYPE != 'INS'" sniffles_minimap2_${sample}.vcf > sniffles_minimap2_${sample}_filtered.vcf #Using sniffles -m svim_reads_ngmlr_${sample}/${sample}.filtered_reads.fq.ngmlr.coordsorted.bam -v sniffles_ngmlr_${sample}.vcf -s 10 -l 50 -t 60 bcftools filter -e "INFO/SVTYPE != 'INS'" sniffles_ngmlr_${sample}.vcf > sniffles_ngmlr_${sample}_filtered.vcf done # -- Compare the results1 and results2, and check them each position in IGV! #minimap2+sniffles2 (base) jhuang@WS-2290C:/mnt/md1/DATA_md1/Data_Patricia_Transposon$ cut -d$'\t' -f2 WT_filtered.vcf | grep -v "##" POS 1855752 (base) jhuang@WS-2290C:/mnt/md1/DATA_md1/Data_Patricia_Transposon$ cut -d$'\t' -f2 1_filtered.vcf | grep -v "##" POS 529416 1855752 2422820 (base) jhuang@WS-2290C:/mnt/md1/DATA_md1/Data_Patricia_Transposon$ cut -d$'\t' -f2 2_filtered.vcf | grep -v "##" POS 529416 1855752 2422820 2424590 (base) jhuang@WS-2290C:/mnt/md1/DATA_md1/Data_Patricia_Transposon$ cut -d$'\t' -f2 3_filtered.vcf | grep -v "##" POS 529416 529416 529418 1855752 2422820 (base) jhuang@WS-2290C:/mnt/md1/DATA_md1/Data_Patricia_Transposon$ cut -d$'\t' -f2 4_filtered.vcf | grep -v "##" POS 55682 529416 1855752 2422820 2424590 (base) jhuang@WS-2290C:/mnt/md1/DATA_md1/Data_Patricia_Transposon$ cut -d$'\t' -f2 5_filtered.vcf | grep -v "##" POS 529416 1855752 2422820 (base) jhuang@WS-2290C:/mnt/md1/DATA_md1/Data_Patricia_Transposon$ cut -d$'\t' -f2 7_filtered.vcf | grep -v "##" POS 518217 1855752 2424590 (base) jhuang@WS-2290C:/mnt/md1/DATA_md1/Data_Patricia_Transposon$ cut -d$'\t' -f2 8_filtered.vcf | grep -v "##" POS 529416 1855752 2422820 (base) jhuang@WS-2290C:/mnt/md1/DATA_md1/Data_Patricia_Transposon$ cut -d$'\t' -f2 9_filtered.vcf | grep -v "##" POS 529416 1855752 2422820 2424590 (base) jhuang@WS-2290C:/mnt/md1/DATA_md1/Data_Patricia_Transposon$ cut -d$'\t' -f2 10_filtered.vcf | grep -v "##" POS 529416 1855752 2422818 2424590 #ngmlr+sniffles2 (base) jhuang@WS-2290C:/mnt/md1/DATA_md1/Data_Patricia_Transposon$ cut -d$'\t' -f2 sniffles_ngmlr_WT_filtered.vcf | grep -v "##" POS (base) jhuang@WS-2290C:/mnt/md1/DATA_md1/Data_Patricia_Transposon$ cut -d$'\t' -f2 sniffles_ngmlr_1_filtered.vcf | grep -v "##" POS 529419 2422819 (base) jhuang@WS-2290C:/mnt/md1/DATA_md1/Data_Patricia_Transposon$ cut -d$'\t' -f2 sniffles_ngmlr_2_filtered.vcf | grep -v "##" POS 529418 2422820 (base) jhuang@WS-2290C:/mnt/md1/DATA_md1/Data_Patricia_Transposon$ cut -d$'\t' -f2 sniffles_ngmlr_3_filtered.vcf | grep -v "##" POS 529418 2422820 (base) jhuang@WS-2290C:/mnt/md1/DATA_md1/Data_Patricia_Transposon$ cut -d$'\t' -f2 sniffles_ngmlr_4_filtered.vcf | grep -v "##" POS 529419 2422820 (base) jhuang@WS-2290C:/mnt/md1/DATA_md1/Data_Patricia_Transposon$ cut -d$'\t' -f2 sniffles_ngmlr_5_filtered.vcf | grep -v "##" POS 529419 2422820 (base) jhuang@WS-2290C:/mnt/md1/DATA_md1/Data_Patricia_Transposon$ cut -d$'\t' -f2 sniffles_ngmlr_7_filtered.vcf | grep -v "##" POS 518219 2422820 (base) jhuang@WS-2290C:/mnt/md1/DATA_md1/Data_Patricia_Transposon$ cut -d$'\t' -f2 sniffles_ngmlr_8_filtered.vcf | grep -v "##" POS 529419 2422820 (base) jhuang@WS-2290C:/mnt/md1/DATA_md1/Data_Patricia_Transposon$ cut -d$'\t' -f2 sniffles_ngmlr_9_filtered.vcf | grep -v "##" POS 529419 2422820 (base) jhuang@WS-2290C:/mnt/md1/DATA_md1/Data_Patricia_Transposon$ cut -d$'\t' -f2 sniffles_ngmlr_10_filtered.vcf | grep -v "##" POS 529418 2422820 #~/Tools/csv2xls-0.4/csv_to_xls.py sniffles_ngmlr_WT_filtered.vcf sniffles_ngmlr_1_filtered.vcf sniffles_ngmlr_2_filtered.vcf sniffles_ngmlr_3_filtered.vcf sniffles_ngmlr_4_filtered.vcf sniffles_ngmlr_5_filtered.vcf sniffles_ngmlr_7_filtered.vcf sniffles_ngmlr_8_filtered.vcf sniffles_ngmlr_9_filtered.vcf sniffles_ngmlr_10_filtered.vcf -d$'\t' -o putative_transposons2.xls # -- Filtering low-complexity insertions using RepeatMasker (TODO: how to use RepeatModeler to generate own lib?) python vcf_to_fasta.py variants.vcf variants.fasta #python filter_low_complexity.py variants.fasta filtered_variants.fasta retained_variants.fasta #Using RepeatMasker to filter the low-complexity fasta, the used h5 lib is /home/jhuang/mambaforge/envs/transposon_long/share/RepeatMasker/Libraries/Dfam.h5 #1.9G python /home/jhuang/mambaforge/envs/transposon_long/share/RepeatMasker/famdb.py -i /home/jhuang/mambaforge/envs/transposon_long/share/RepeatMasker/Libraries/Dfam.h5 names 'bacteria' | head Exact Matches ============= 2 bacteria (blast name), Bacteria
(scientific name), eubacteria (genbank common name), Monera (in-part), Procaryotae (in-part), Prokaryota (in-part), Prokaryotae (in-part), prokaryote (in-part), prokaryotes (in-part) Non-exact Matches ================= 1783272 Terrabacteria group (scientific name) 91061 Bacilli (scientific name), Bacilli Ludwig et al. 2010 (authority), Bacillus/Lactobacillus/Streptococcus group (synonym), Firmibacteria (synonym), Firmibacteria Murray 1988 (authority) 1239 Bacillaeota (synonym), Bacillaeota Oren et al. 2015 (authority), Bacillota (synonym), Bacillus/Clostridium group (synonym), clostridial firmicutes (synonym), Clostridium group firmicutes (synonym), Firmacutes (synonym), firmicutes (blast name), Firmicutes (scientific name), Firmicutes corrig. Gibbons and Murray 1978 (authority), Low G+C firmicutes (synonym), low G+C Gram-positive bacteria (common name), low GC Gram+ (common name) Summary of Classes within Firmicutes: * Bacilli (includes many common pathogenic and non-pathogenic Gram-positive bacteria, taxid=91061) * Bacillus (e.g., Bacillus subtilis, Bacillus anthracis) * Staphylococcus (e.g., Staphylococcus aureus, Staphylococcus epidermidis) * Streptococcus (e.g., Streptococcus pneumoniae, Streptococcus pyogenes) * Listeria (e.g., Listeria monocytogenes) * Clostridia (includes many anaerobic species like Clostridium and Clostridioides) * Erysipelotrichia (intestinal bacteria, some pathogenic) * Tissierellia (less-studied, veterinary relevance) * Mollicutes (cell wall-less, includes Mycoplasma species) * Negativicutes (includes some Gram-negative, anaerobic species) RepeatMasker -species Bacilli -pa 4 -xsmall variants.fasta python extract_unmasked_seq.py variants.fasta.masked unmasked_variants.fasta #bcftools filter -i ‘QUAL>30 && INFO/SVLEN>100’ variants.vcf -o filtered.vcf # #bcftools view -i ‘SVTYPE=”INS”‘ variants.vcf | bcftools query -f ‘%CHROM\t%POS\t%REF\t%ALT\t%INFO\n’ > insertions.txt #mamba install -c bioconda vcf2fasta #vcf2fasta variants.vcf -o insertions.fasta #grep “SEQS” variants.vcf | awk ‘{ print $1, $2, $4, $5, $8 }’ > insertions.txt #python3 filtering_low_complexity.py # #vcftools –vcf input.vcf –recode –out filtered_output –minSVLEN 100 #bcftools filter -e ‘INFO/SEQS ~ “^(G+|C+|T+|A+){4,}”‘ variants.vcf -o filtered.vcf # — calculate the percentage of reads To calculate the percentage of reads that contain the insertion from the VCF entry, use the INFO and FORMAT fields provided in the VCF record. Step 1: Extract Relevant Information In the provided VCF entry: RE (Reads Evidence): 733 – the total number of reads supporting the insertion. GT (Genotype): 1/1 – this indicates a homozygous insertion, meaning all reads covering this region are expected to have the insertion. AF (Allele Frequency): 1 – a 100% allele frequency, indicating that every read in this sample supports the insertion. DR (Depth Reference): 0 – the number of reads supporting the reference allele. DV (Depth Variant): 733 – the number of reads supporting the variant allele (insertion). Step 2: Calculate Percentage of Reads Supporting the Insertion Using the formula: Percentage of reads with insertion=(DVDR+DV)×100 Percentage of reads with insertion=(DR+DVDV)×100 Substitute the values: Percentage=(7330+733)×100=100% Percentage=(0+733733)×100=100% Conclusion Based on the VCF record, 100% of the reads support the insertion, indicating that the insertion is fully present in the sample (homozygous insertion). This is consistent with the AF=1 and GT=1/1 fields. -
(failed) using own scripts direct analyze the bam-file via cigarString (failed due to too many short insertions!)
transposons.fasta is a file containing the transposon sequences in FASTA format. python your_script.py input.bam reference.fasta transposons.fasta #Transposon_Sequence Insertion_Frequency #Tn5 10 #Tn10 5 #Unknown 3 python putative_transposons_with_counts.py mapping_WT.sorted.bam CP020463.fasta rule trim_short_reads: input: "/data/short-reads.fq.gz" output: "/data/trimmed-short-reads.fasta" shell: "python3 trim_by_tag_length.py /data/short-reads.fq.gz 10 > /data/trimmed-short-reads.fasta" rule trim_long_reads: input: "/data/long-reads.fq.gz" output: "/data/trimmed-long-reads.fasta" shell: "python3 trim_by_tag_length.py /data/long-reads.fq.gz 92 > /data/trimmed-long-reads.fasta" rule install_bwa: output: "bwa-mem2-2.0pre2_x64-linux/bwa-mem2" shell: "curl -L https://github.com/bwa-mem2/bwa-mem2/releases/download/v2.0pre2/bwa-mem2-2.0pre2_x64-linux.tar.bz2 | tar jxf -" rule map_short_reads: input: "bwa-mem2-2.0pre2_x64-linux/bwa-mem2", "/data/reference.fasta", "/data/trimmed-short-reads.fasta" output: "/data/mapping.sam" shell: """ bwa-mem2-2.0pre2_x64-linux/bwa-mem2 index /data/reference.fasta bwa-mem2-2.0pre2_x64-linux/bwa-mem2 mem /data/reference.fasta /data/trimmed-short-reads.fasta > /data/mapping.sam """ rule map_long_reads: input: "/data/reference.fasta", "/data/trimmed-long-reads.fasta" output: "/data/mapping.bam" conda: "minimap2.yml" shell: """ minimap2 -x map-ont -d reference /data/reference.fasta > /dev/null 2>&1 minimap2 -c -a -o /data/mapping.nonunique.sam -N 1 -x map-ont reference /data/trimmed-long-reads.fasta samtools view -bq 1 /data/mapping.nonunique.sam > /data/mapping.bam """ rule convert_sam_to_bam: input: "/data/mapping.sam" output: "/data/mapping.bam", conda: "samtools.yml" shell: "samtools view -S -b /data/mapping.sam > /data/mapping.bam" rule get_unmapped_reads: input: "/data/mapping.bam" output: "/data/mapping.sorted.bam" conda: "samtools.yml" shell: """ # samtools view -f 4 /data/mapping.bam > /data/unmapped.sam # samtools view -S -b /data/unmapped.sam > /data/unmapped.bam # samtools bam2fq /data/unmapped.bam | seqtk seq -A - > /data/unmapped.fa samtools sort /data/mapping.bam -o /data/mapping.sorted.bam samtools index /data/mapping.sorted.bam """ rule create_insertion_plot: input: "/data/mapping.sorted.bam" output: "/data/summary-stats.tsv" shell: """ python3 ~/Scripts/sam_to_insert_plot.py /data/mapping.sorted.bam /data/reference.fasta > /data/summary-stats.tsv """
-
Polishing of assembly: Use tools like Medaka to refine variant calls by leveraging consensus sequences derived from nanopore data.
mamba install -c bioconda medaka medaka-consensus -i aligned_reads.bam -r reference.fasta -o polished_output -t 4
-
Compare Insertions Across Samples
Merge Variants Across Samples: Use SURVIVOR to merge and compare the detected insertions in all samples against the WT: SURVIVOR merge input_vcfs.txt 1000 1 1 1 0 30 merged.vcf Input: List of VCF files from Sniffles2. Output: A consolidated VCF file with shared and unique variants. Filter WT Insertions: Identify transposons present only in samples 1–9 by subtracting WT variants using bcftools: bcftools isec WT.vcf merged.vcf -p comparison_results
-
Validate and Visualize
Visualize with IGV: Use IGV to inspect insertion sites in the alignment and confirm quality. igv.sh Validate Findings: Perform PCR or additional sequencing for key transposon insertion sites to confirm results.
-
Alternatives to TEPID for Long-Read Data
If you’re looking for transposon-specific tools for long reads: REPET: A robust transposon annotation tool compatible with assembled genomes. EDTA (Extensive de novo TE Annotator): A pipeline to identify, classify, and annotate transposons. Works directly on your assembled genomes. perl EDTA.pl --genome WT.fasta --type all
-
The WT.vcf file in the pipeline is generated by detecting structural variants (SVs) in the wild-type (WT) genome aligned against itself or using it as a baseline reference. Here’s how you can generate the WT.vcf:
Steps to Generate WT.vcf 1. Align WT Reads to the WT Reference Genome The goal here is to create an alignment of the WT sequencing data to the WT reference genome to detect any self-contained structural variations, such as native insertions, deletions, or duplications. Command using Minimap2: minimap2 -ax map-ont WT.fasta WT_reads.fastq | samtools sort -o WT.sorted.bam Index the BAM file: samtools index WT.sorted.bam 2. Detect Structural Variants with Sniffles2 Run Sniffles2 on the WT alignment to call structural variants: sniffles --input WT.sorted.bam --vcf WT.vcf This step identifies: Native transposons and insertions present in the WT genome. Other structural variants that are part of the reference genome or sequencing artifacts. Key parameters to consider: --min_support: Adjust based on your WT sequencing coverage. --max_distance: Define proximity for merging variants. --min_length: Set a minimum SV size (e.g., >50 bp for transposons).
-
Clean and Filter the WT.vcf, Variant Filtering: Remove low-confidence variants based on read depth, quality scores, or allele frequency.
To ensure the WT.vcf only includes relevant transposons or SVs: Use bcftools or similar tools to filter out low-confidence variants: bcftools filter -e "QUAL < 20 || INFO/SVTYPE != 'INS'" WT.vcf > WT_filtered.vcf bcftools filter -e "QUAL < 1 || INFO/SVTYPE != 'INS'" 1_.vcf > 1_filtered_.vcf
-
NOTE that in this pipeline, the WT.fasta (reference genome) is typically a high-quality genome sequence from a database or a well-annotated version of your species’ genome. It is not assembled from the WT.fastq sequencing reads in this context. Here’s why:
Why Use a Reference Genome (WT.fasta) from a Database? Higher Quality and Completeness: Database references (e.g., NCBI, Ensembl) are typically well-assembled, highly polished, and annotated. They serve as a reliable baseline for variant detection. Consistency: Using a standard reference ensures consistent comparisons across your WT and samples (1–9). Variants detected will be relative to this reference, not influenced by possible assembly errors. Saves Time: Assembling a reference genome from WT reads requires significant computational effort. Using an existing reference streamlines the analysis. Alternative: Assembling WT from FASTQ If you don’t have a high-quality reference genome (WT.fasta) and must rely on your WT FASTQ reads: Assemble the genome from your WT.fastq: Use long-read assemblers like Flye, Canu, or Shasta to create a draft genome. flye --nano-raw WT.fastq --out-dir WT_assembly --genome-size
Polish the assembly using tools like Racon (with the same reads) or Medaka for higher accuracy. Use the assembled and polished genome as your WT.fasta reference for further steps. Key Takeaways: If you have access to a reliable, high-quality reference genome, use it as the WT.fasta. Only assemble WT.fasta from raw reads (WT.fastq) if no database reference is available for your organism. -
Annotate Transposable Elements: Tools like ANNOVAR or SnpEff provide functional insights into the detected variants.
# -- (successful!) MANUALLY Search for all found insertion sequences at https://tncentral.ncc.unesp.br/blast/ ! # Or use the program available at https://github.com/danillo-alvarenga/tncomp_finder if there are numerous matches. #https://tncentral.ncc.unesp.br/report/te/Tn551-Y13600.1 # -- (failed!) try TEPID for annotation mamba install tepid=0.10 -c bioconda #(tepid_env) for sample in WT 1 2 3 4 5 7 8 9 10; do tepid-map-se -x CP020463 -p 10 -n ${sample}_tepid -q ../batch1_depth25/trycycler_${sample}/reads.fastq; tepid-discover -k -i -p 10 -n ${sample}_tepid -c ${sample}_tepid --se; done tepid-discover -k -i -p 10 -n 1_tepid -c 1.sorted.bam --se; tepid-refine [-h] [--version] [-k] [-i INSERTIONS] [-d DELETIONS] [-p PROC] -t TE -n NAME -c CONC -s SPLIT -a AL # -- (failed!) try EDTA for annotation https://github.com/oushujun/EDTA (transposon_long) mamba install -c conda-forge -c bioconda edta mamba install bioconda::rmblast # cd RepeatMasker; ./configure EDTA.pl --genome CP020463.fasta --species others --threads 40 For general-purpose TE annotation: EDTA, RepeatMasker, or RepeatScout are your best options. For de novo repeat identification: RepeatScout is highly effective. For LTR retrotransposons: Use LTR_retriever. For bacterial-specific annotations: Transposome, TEfinder, and ISfinder can be useful.
-
Validation: Cross-validate with short-read sequencing data if available.
Whole Genome Sequencing: Pricing and Services from Dante Labs and Other Leading Providers
Whole genome sequencing (WGS) is an advanced genetic test that decodes your entire DNA, offering a detailed look at your genetic makeup. Several companies offer whole genome sequencing services, with varying levels of coverage, insights, and prices. Here’s a breakdown of the pricing and services from Dante Labs and other top providers.
1. Dante Labs
- Price:
- Basic Package: $599
- Extended Package: $1,299
- Service: Dante Labs provides true whole genome sequencing, covering all 3 billion base pairs in your DNA.
- Additional Features: The extended package includes detailed health and wellness reports, ancestry insights, and traits analysis.
- Data Access: You’ll receive full access to your raw genetic data, which can be downloaded for further analysis.
- Turnaround Time: Typically a few weeks.
2. Veritas Genetics
- Price: Approx. $999 to $1,200
- Service: Offers true whole genome sequencing with 30x coverage, providing comprehensive health, ancestry, and trait insights.
- Additional Features: Includes health-related reports and genetic trait analysis.
- Data Access: Full genome data is provided, and updates are available as new research emerges.
- Turnaround Time: A few weeks.
3. Nebula Genomics
- Price:
- Basic Whole Genome Sequencing: $299 (for 30x coverage)
- Upgraded Services: Up to $999 or more.
- Service: Provides whole genome sequencing and delivers periodic updates on new findings from genetic research.
- Additional Features: Includes health insights and disease risk reports, with a focus on privacy and control over your genetic data.
- Data Access: Full access to raw genome data and new insights as research progresses.
- Turnaround Time: Typically a few weeks.
4. Genos
- Price: Approx. $599 to $1,000
- Service: Genos offers whole genome sequencing with a focus on health insights, disease risks, and traits.
- Additional Features: Provides in-depth health reports based on your genetic data.
- Data Access: Full access to your raw genomic data.
- Turnaround Time: A few weeks.
5. Helix
- Price: $999 to $1,500
- Service: Helix offers whole genome sequencing in collaboration with other companies to provide genetic insights.
- Additional Features: Works with partners to deliver reports on health, ancestry, and traits.
- Data Access: You get access to your genetic data, though it’s mainly used for specific third-party reports.
- Turnaround Time: A few weeks.
6. SelfDecode
- Price: Approx. $299 (for basic sequencing) to $899 for full services.
- Service: Whole genome sequencing through third-party labs with a focus on health and wellness insights.
- Additional Features: Reports include genetic predispositions to diseases and traits.
- Data Access: Full genome data with health insights.
- Turnaround Time: A few weeks.
7. Fulgent Genetics
- Price: Approx. $600 to $1,500
- Service: Fulgent Genetics provides whole genome sequencing with a focus on medical and health genetics.
- Additional Features: Includes health risk and disease reports, with genetic counseling services available.
- Data Access: Full genome sequencing data with medical reports.
- Turnaround Time: A few weeks.
8. 23andMe
- Price:
- Health + Ancestry Service: $199
- Ancestry Service: $99
- Service: 23andMe focuses on genotyping (not full sequencing) and provides ancestry and health-related insights.
- Additional Features: Offers reports on ancestry, genetic traits, and some health information.
- Data Access: Limited to selected markers rather than whole genome sequencing.
- Turnaround Time: 2-3 weeks.
9. AncestryDNA
- Price: Approx. $99 to $199
- Service: Focuses on ancestry testing through genotyping (not full genome sequencing).
- Additional Features: Provides ethnicity estimates and genealogical insights.
- Data Access: Only selected markers, not full genome sequencing.
- Turnaround Time: 6-8 weeks.
Summary of Pricing and Features:
Provider | Price | Service | Full Genome Coverage | Additional Features |
---|---|---|---|---|
Dante Labs | $599 (Basic), $1,299 (Extended) | Whole genome sequencing | Yes | Health, ancestry, traits reports |
Veritas Genetics | $999-$1,200 | Whole genome sequencing | Yes | Health, ancestry, traits reports |
Nebula Genomics | $299 (Basic), $999 (Advanced) | Whole genome sequencing | Yes | Health insights, periodic updates |
Genos | $599-$1,000 | Whole genome sequencing | Yes | Health, disease risk, traits reports |
Helix | $999-$1,500 | Whole genome sequencing | Yes | Partnered reports (health, ancestry) |
SelfDecode | $299-$899 | Whole genome sequencing | Yes | Health, wellness, disease risk reports |
Fulgent Genetics | $600-$1,500 | Whole genome sequencing | Yes | Health, medical, disease risk reports |
23andMe | $99-$199 | Genotyping (not WGS) | No | Ancestry, health reports |
AncestryDNA | $99-$199 | Genotyping (not WGS) | No | Ancestry, ethnicity reports |
Conclusion:
If you’re looking for true whole genome sequencing, companies like Dante Labs ($599), Nebula Genomics ($299), Genos ($599), and Veritas Genetics ($999) offer comprehensive services with full genome coverage. 23andMe and AncestryDNA are more affordable but provide genotyping services, which focus on selected genetic markers and do not offer a full analysis of your DNA.
For a complete genome analysis, Dante Labs, Nebula Genomics, and Genos are great options at various price points, while Veritas Genetics offers additional health insights at a higher cost.