There are 334 articles for you to read.
Author: gene_x
Abstract: To find the closest peaks in the genome regions defined by a bed file, you can use a tool like BEDTools. BEDTools provides a function `closest` which allows you to find the closest feature in a second
Author: gene_x
Abstract: If you have genomic coordinates (like gene positions, SNP positions etc) in hg19 and want to convert them to hg38, you'd use what's known as a "liftover". The UCSC Genome Browser provides a tool speci
Author: gene_x
Abstract: import pprint import argparse import matplotlib.pyplot as plt import pandas as pd import gffutils import numpy as np #db = gffutils.create_db('gencode.v43.annotation.gtf', dbfn='gencode.v43.an
Author: gene_x
Abstract: To implement the clustering of promoter types based on motif frequency and distribution using Python, you can follow these steps: 1. Import the required libraries: import pandas as pd import num
Author: gene_x
Abstract: import os ####################################################### ############### Snakefile Configuration ############### ####################################################### configfile: "ba
Author: gene_x
Abstract: 单细胞RNA测序数据分析的具体步骤包括以下几个阶段: 1. 数据预处理:这一步涉及到对原始测序数据进行质量控制,包括移除低质量的测序读段,对读段进行修剪,以及对可能的污染序列进行识别和移除。这一步骤是为了确保后续的分析基于的是高质量的数据。 2. 比对和定量:接下来的步骤是将预处理后的读段比对到参考基因组上,并且对每个细胞中每个基因的表达量进行定量。比对可以使用如STAR, HISAT2等工具
Author: gene_x
Abstract: #!/bin/bash #./search_motif4.sh test1.fasta GRG 5 if [ $# -ne 3 ]; then echo "Usage: $0 <fasta_file> <motif> <context>" exit 1 fi fasta_file=$1 motif=$2 context=$3 motif_regex=$(echo
Author: gene_x
Abstract: To provide a more detailed explanation of how to define promoter types based on the frequency and distribution of the 'GRGGC' motif on both + and - strands within the promoter region, I will outline t
Author: gene_x
Abstract: To generate a database file for the hg38 human genome assembly for use with the DiffReps tool, you will first need to download the hg38 annotation file in GTF or GFF format, and then convert it to the
Author: gene_x
Abstract: H3K4me3(trimethylated histone H3 lysine 4)和H3K27me3(trimethylated histone H3 lysine 27)是组蛋白修饰的一种,与基因表达调控密切相关。转录因子(transcription factor)则是一类能够调控基因转录的蛋白质。 1. H3K4me3:通常与基因启动子区域相关联,标记着活性染色质,有利于基因的转录。H3K
© 2023 XGenes.com Impressum