Processing Data_Tam_RNAseq_2025_LB_vs_Mac_ATCC19606

gene_x 0 like s 10 view s

Tags: pipeline, RNA-seq

  1. Targets

    Could you please assist me with processing RNA-seq data? The reference genome is CP059040. I aim to analyze the data using PCA, a Venn diagram, and KEGG and GO annotation enrichment analysis.
    The samples are labeled as follows (where 'x' indicates the replicate number):
    
        LB-AB-x
        LB-IJ-x
        LB-W1-x
        LB-WT19606-x
        LB-Y1-x
        Mac-AB-x
        Mac-IJ-x
        Mac-W1-x
        Mac-WT19606-x
        Mac-Y1-x
    
  2. Download the raw data

    ./lnd login -u X101SC25015922-Z02-J002 -p m*********5
    ./lnd list
    ./lnd cp -d oss://  ./
    ./lnd cp oss://CP2024102300053 .  #Error
    ./lnd list oss://CP2024102300053
    ./lnd cp -d oss://CP2024102300053/H101SC25015922/RSMR00204 .
    #CP2024102300053/H101SC25015922/RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002
    
  3. Prepare raw data

    mkdir raw_data; cd raw_data
    
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/LB-AB-1/LB-AB-1_1.fq.gz LB-AB-r1_R1.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/LB-AB-1/LB-AB-1_2.fq.gz LB-AB-r1_R2.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/LB-AB-2/LB-AB-2_1.fq.gz LB-AB-r2_R1.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/LB-AB-2/LB-AB-2_2.fq.gz LB-AB-r2_R2.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/LB-AB-3/LB-AB-3_1.fq.gz LB-AB-r3_R1.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/LB-AB-3/LB-AB-3_2.fq.gz LB-AB-r3_R2.fq.gz
    
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/LB-IJ-1/LB-IJ-1_1.fq.gz LB-IJ-r1_R1.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/LB-IJ-1/LB-IJ-1_2.fq.gz LB-IJ-r1_R2.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/LB-IJ-2/LB-IJ-2_1.fq.gz LB-IJ-r2_R1.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/LB-IJ-2/LB-IJ-2_2.fq.gz LB-IJ-r2_R2.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/LB-IJ-4/LB-IJ-4_1.fq.gz LB-IJ-r4_R1.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/LB-IJ-4/LB-IJ-4_2.fq.gz LB-IJ-r4_R2.fq.gz
    
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/LB-W1-1/LB-W1-1_1.fq.gz LB-W1-r1_R1.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/LB-W1-1/LB-W1-1_2.fq.gz LB-W1-r1_R2.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/LB-W1-2/LB-W1-2_1.fq.gz LB-W1-r2_R1.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/LB-W1-2/LB-W1-2_2.fq.gz LB-W1-r2_R2.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/LB-W1-3/LB-W1-3_1.fq.gz LB-W1-r3_R1.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/LB-W1-3/LB-W1-3_2.fq.gz LB-W1-r3_R2.fq.gz
    
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/LB-WT19606-2/LB-WT19606-2_1.fq.gz LB-WT19606-r2_R1.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/LB-WT19606-2/LB-WT19606-2_2.fq.gz LB-WT19606-r2_R2.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/LB-WT19606-3/LB-WT19606-3_1.fq.gz LB-WT19606-r3_R1.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/LB-WT19606-3/LB-WT19606-3_2.fq.gz LB-WT19606-r3_R2.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/LB-WT19606-4/LB-WT19606-4_1.fq.gz LB-WT19606-r4_R1.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/LB-WT19606-4/LB-WT19606-4_2.fq.gz LB-WT19606-r4_R2.fq.gz
    
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/LB-Y1-2/LB-Y1-2_1.fq.gz LB-Y1-r2_R1.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/LB-Y1-2/LB-Y1-2_2.fq.gz LB-Y1-r2_R2.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/LB-Y1-3/LB-Y1-3_1.fq.gz LB-Y1-r3_R1.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/LB-Y1-3/LB-Y1-3_2.fq.gz LB-Y1-r3_R2.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/LB-Y1-4/LB-Y1-4_1.fq.gz LB-Y1-r4_R1.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/LB-Y1-4/LB-Y1-4_2.fq.gz LB-Y1-r4_R2.fq.gz
    
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/Mac-AB-1/Mac-AB-1_1.fq.gz Mac-AB-r1_R1.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/Mac-AB-1/Mac-AB-1_2.fq.gz Mac-AB-r1_R2.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/Mac-AB-2/Mac-AB-2_1.fq.gz Mac-AB-r2_R1.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/Mac-AB-2/Mac-AB-2_2.fq.gz Mac-AB-r2_R2.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/Mac-AB-3/Mac-AB-3_1.fq.gz Mac-AB-r3_R1.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/Mac-AB-3/Mac-AB-3_2.fq.gz Mac-AB-r3_R2.fq.gz
    
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/Mac-IJ-1/Mac-IJ-1_1.fq.gz Mac-IJ-r1_R1.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/Mac-IJ-1/Mac-IJ-1_2.fq.gz Mac-IJ-r1_R2.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/Mac-IJ-2/Mac-IJ-2_1.fq.gz Mac-IJ-r2_R1.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/Mac-IJ-2/Mac-IJ-2_2.fq.gz Mac-IJ-r2_R2.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/Mac-IJ-4/Mac-IJ-4_1.fq.gz Mac-IJ-r4_R1.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/Mac-IJ-4/Mac-IJ-4_2.fq.gz Mac-IJ-r4_R2.fq.gz
    
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/Mac-W1-1/Mac-W1-1_1.fq.gz Mac-W1-r1_R1.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/Mac-W1-1/Mac-W1-1_2.fq.gz Mac-W1-r1_R2.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/Mac-W1-2/Mac-W1-2_1.fq.gz Mac-W1-r2_R1.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/Mac-W1-2/Mac-W1-2_2.fq.gz Mac-W1-r2_R2.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/Mac-W1-3/Mac-W1-3_1.fq.gz Mac-W1-r3_R1.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/Mac-W1-3/Mac-W1-3_2.fq.gz Mac-W1-r3_R2.fq.gz
    
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/Mac-WT19606-2/Mac-WT19606-2_1.fq.gz Mac-WT19606-r2_R1.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/Mac-WT19606-2/Mac-WT19606-2_2.fq.gz Mac-WT19606-r2_R2.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/Mac-WT19606-3/Mac-WT19606-3_1.fq.gz Mac-WT19606-r3_R1.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/Mac-WT19606-3/Mac-WT19606-3_2.fq.gz Mac-WT19606-r3_R2.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/Mac-WT19606-4/Mac-WT19606-4_1.fq.gz Mac-WT19606-r4_R1.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/Mac-WT19606-4/Mac-WT19606-4_2.fq.gz Mac-WT19606-r4_R2.fq.gz
    
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/Mac-Y1-2/Mac-Y1-2_1.fq.gz Mac-Y1-r2_R1.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/Mac-Y1-2/Mac-Y1-2_2.fq.gz Mac-Y1-r2_R2.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/Mac-Y1-3/Mac-Y1-3_1.fq.gz Mac-Y1-r3_R1.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/Mac-Y1-3/Mac-Y1-3_2.fq.gz Mac-Y1-r3_R2.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/Mac-Y1-4/Mac-Y1-4_1.fq.gz Mac-Y1-r4_R1.fq.gz
    ln -s ../RSMR00204/X101SC25015922-Z02/X101SC25015922-Z02-J002/01.RawData/Mac-Y1-4/Mac-Y1-4_2.fq.gz Mac-Y1-r4_R2.fq.gz
    
  4. Preparing the directory trimmed

    mkdir trimmed trimmed_unpaired;
    for sample_id in LB-AB-r1 LB-AB-r2 LB-AB-r3  LB-IJ-r1 LB-IJ-r2 LB-IJ-r4  LB-W1-r1 LB-W1-r2 LB-W1-r3  LB-WT19606-r2 LB-WT19606-r3 LB-WT19606-r4  LB-Y1-r2 LB-Y1-r3 LB-Y1-r4    Mac-AB-r1 Mac-AB-r2 Mac-AB-r3  Mac-IJ-r1 Mac-IJ-r2 Mac-IJ-r4  Mac-W1-r1 Mac-W1-r2 Mac-W1-r3  Mac-WT19606-r2 Mac-WT19606-r3 Mac-WT19606-r4  Mac-Y1-r2 Mac-Y1-r3 Mac-Y1-r4; do
            java -jar /home/jhuang/Tools/Trimmomatic-0.36/trimmomatic-0.36.jar PE -threads 100 raw_data/${sample_id}_R1.fq.gz raw_data/${sample_id}_R2.fq.gz trimmed/${sample_id}_R1.fq.gz trimmed_unpaired/${sample_id}_R1.fq.gz trimmed/${sample_id}_R2.fq.gz trimmed_unpaired/${sample_id}_R2.fq.gz ILLUMINACLIP:/home/jhuang/Tools/Trimmomatic-0.36/adapters/TruSeq3-PE-2.fa:2:30:10:8:TRUE LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36 AVGQUAL:20; done 2> trimmomatic_pe.log;
    done
    
  5. Preparing samplesheet.csv

    sample,fastq_1,fastq_2,strandedness
    LB-AB-r1,LB-AB-r1_R1.fq.gz,LB-AB-r1_R2.fq.gz,auto
    LB-AB-r2,LB-AB-r2_R1.fq.gz,LB-AB-r2_R2.fq.gz,auto
    LB-AB-r3,LB-AB-r3_R1.fq.gz,LB-AB-r3_R2.fq.gz,auto
    LB-IJ-r1,LB-IJ-r1_R1.fq.gz,LB-IJ-r1_R2.fq.gz,auto
    LB-IJ-r2,LB-IJ-r2_R1.fq.gz,LB-IJ-r2_R2.fq.gz,auto
    LB-IJ-r4,LB-IJ-r4_R1.fq.gz,LB-IJ-r4_R2.fq.gz,auto
    LB-W1-r1,LB-W1-r1_R1.fq.gz,LB-W1-r1_R2.fq.gz,auto
    LB-W1-r2,LB-W1-r2_R1.fq.gz,LB-W1-r2_R2.fq.gz,auto
    LB-W1-r3,LB-W1-r3_R1.fq.gz,LB-W1-r3_R2.fq.gz,auto
    LB-WT19606-r2,LB-WT19606-r2_R1.fq.gz,LB-WT19606-r2_R2.fq.gz,auto
    LB-WT19606-r3,LB-WT19606-r3_R1.fq.gz,LB-WT19606-r3_R2.fq.gz,auto
    LB-WT19606-r4,LB-WT19606-r4_R1.fq.gz,LB-WT19606-r4_R2.fq.gz,auto
    LB-Y1-r2,LB-Y1-r2_R1.fq.gz,LB-Y1-r2_R2.fq.gz,auto
    LB-Y1-r3,LB-Y1-r3_R1.fq.gz,LB-Y1-r3_R2.fq.gz,auto
    LB-Y1-r4,LB-Y1-r4_R1.fq.gz,LB-Y1-r4_R2.fq.gz,auto
    Mac-AB-r1,Mac-AB-r1_R1.fq.gz,Mac-AB-r1_R2.fq.gz,auto
    Mac-AB-r2,Mac-AB-r2_R1.fq.gz,Mac-AB-r2_R2.fq.gz,auto
    Mac-AB-r3,Mac-AB-r3_R1.fq.gz,Mac-AB-r3_R2.fq.gz,auto
    Mac-IJ-r1,Mac-IJ-r1_R1.fq.gz,Mac-IJ-r1_R2.fq.gz,auto
    Mac-IJ-r2,Mac-IJ-r2_R1.fq.gz,Mac-IJ-r2_R2.fq.gz,auto
    Mac-IJ-r4,Mac-IJ-r4_R1.fq.gz,Mac-IJ-r4_R2.fq.gz,auto
    Mac-W1-r1,Mac-W1-r1_R1.fq.gz,Mac-W1-r1_R2.fq.gz,auto
    Mac-W1-r2,Mac-W1-r2_R1.fq.gz,Mac-W1-r2_R2.fq.gz,auto
    Mac-W1-r3,Mac-W1-r3_R1.fq.gz,Mac-W1-r3_R2.fq.gz,auto
    Mac-WT19606-r2,Mac-WT19606-r2_R1.fq.gz,Mac-WT19606-r2_R2.fq.gz,auto
    Mac-WT19606-r3,Mac-WT19606-r3_R1.fq.gz,Mac-WT19606-r3_R2.fq.gz,auto
    Mac-WT19606-r4,Mac-WT19606-r4_R1.fq.gz,Mac-WT19606-r4_R2.fq.gz,auto
    Mac-Y1-r2,Mac-Y1-r2_R1.fq.gz,Mac-Y1-r2_R2.fq.gz,auto
    Mac-Y1-r3,Mac-Y1-r3_R1.fq.gz,Mac-Y1-r3_R2.fq.gz,auto
    Mac-Y1-r4,Mac-Y1-r4_R1.fq.gz,Mac-Y1-r4_R2.fq.gz,auto
    
    #mv trimmed/* .
    
  6. nextflow run

    #Example1: http://xgenes.com/article/article-content/157/prepare-virus-gtf-for-nextflow-run/
    #docker pull nfcore/rnaseq
    ln -s /home/jhuang/Tools/nf-core-rnaseq-3.12.0/ rnaseq
    
    # ---- SUCCESSFUL with directly downloaded gff3 and fasta from NCBI using docker after replacing 'CDS' with 'exon' ----
    (host_env) /usr/local/bin/nextflow run rnaseq/main.nf --input samplesheet.csv --outdir results    --fasta "/home/jhuang/DATA/Data_Tam_RNAseq_2024_AUM_MHB_Urine/CP059040.fasta" --gff "/home/jhuang/DATA/Data_Tam_RNAseq_2024_AUM_MHB_Urine/CP059040_m.gff"        -profile docker -resume  --max_cpus 55 --max_memory 512.GB --max_time 2400.h    --save_align_intermeds --save_unaligned --save_reference    --aligner 'star_salmon'    --gtf_group_features 'gene_id'  --gtf_extra_attributes 'gene_name' --featurecounts_group_type 'gene_biotype' --featurecounts_feature_type 'transcript'
    
  7. Import data and pca-plot

    #mamba activate r_env
    
    #install.packages("ggfun")
    # Import the required libraries
    library("AnnotationDbi")
    library("clusterProfiler")
    library("ReactomePA")
    library(gplots)
    library(tximport)
    library(DESeq2)
    #library("org.Hs.eg.db")
    library(dplyr)
    library(tidyverse)
    #install.packages("devtools")
    #devtools::install_version("gtable", version = "0.3.0")
    library(gplots)
    library("RColorBrewer")
    #install.packages("ggrepel")
    library("ggrepel")
    # install.packages("openxlsx")
    library(openxlsx)
    library(EnhancedVolcano)
    library(DESeq2)
    
    setwd("~/DATA/Data_Tam_RNAseq_2025_LB_vs_Mac_ATCC19606/results/star_salmon")
    # Define paths to your Salmon output quantification files
    
    files <- c("LB-AB_r1" = "./LB-AB-r1/quant.sf",
            "LB-AB_r2" = "./LB-AB-r2/quant.sf",
            "LB-AB_r3" = "./LB-AB-r3/quant.sf",
            "LB-IJ_r1" = "./LB-IJ-r1/quant.sf",
            "LB-IJ_r2" = "./LB-IJ-r2/quant.sf",
            "LB-IJ_r4" = "./LB-IJ-r4/quant.sf",
            "LB-W1_r1" = "./LB-W1-r1/quant.sf",
            "LB-W1_r2" = "./LB-W1-r2/quant.sf",
            "LB-W1_r3" = "./LB-W1-r3/quant.sf",
            "LB-WT19606_r2" = "./LB-WT19606-r2/quant.sf",
            "LB-WT19606_r3" = "./LB-WT19606-r3/quant.sf",
            "LB-WT19606_r4" = "./LB-WT19606-r4/quant.sf",
            "LB-Y1_r2" = "./LB-Y1-r2/quant.sf",
            "LB-Y1_r3" = "./LB-Y1-r3/quant.sf",
            "LB-Y1_r4" = "./LB-Y1-r4/quant.sf",
            "Mac-AB_r1" = "./Mac-AB-r1/quant.sf",
            "Mac-AB_r2" = "./Mac-AB-r2/quant.sf",
            "Mac-AB_r3" = "./Mac-AB-r3/quant.sf",
            "Mac-IJ_r1" = "./Mac-IJ-r1/quant.sf",
            "Mac-IJ_r2" = "./Mac-IJ-r2/quant.sf",
            "Mac-IJ_r4" = "./Mac-IJ-r4/quant.sf",
            "Mac-W1_r1" = "./Mac-W1-r1/quant.sf",
            "Mac-W1_r2" = "./Mac-W1-r2/quant.sf",
            "Mac-W1_r3" = "./Mac-W1-r3/quant.sf",
            "Mac-WT19606_r2" = "./Mac-WT19606-r2/quant.sf",
            "Mac-WT19606_r3" = "./Mac-WT19606-r3/quant.sf",
            "Mac-WT19606_r4" = "./Mac-WT19606-r4/quant.sf",
            "Mac-Y1_r2" = "./Mac-Y1-r2/quant.sf",
            "Mac-Y1_r3" = "./Mac-Y1-r3/quant.sf",
            "Mac-Y1_r4" = "./Mac-Y1-r4/quant.sf")
    
    # Import the transcript abundance data with tximport
    txi <- tximport(files, type = "salmon", txIn = TRUE, txOut = TRUE)
    # Define the replicates and condition of the samples
    #replicate <- factor(c("r1", "r2", "r3", "r1", "r2", "r3", "r1", "r2", "r3"))
    #adeA and adeB encode a membrane fusion protein that is part of the AdeABC efflux pump, which contributes to multidrug resistance.
    #System: Part of the AdeIJK efflux pump, which includes: adeI — membrane fusion protein, adeJ — RND transporter, adeK — outer membrane factor
    condition <- factor(c("LB-AB","LB-AB","LB-AB", "LB-IJ","LB-IJ","LB-IJ", "LB-W1","LB-W1","LB-W1","LB-WT19606","LB-WT19606","LB-WT19606","LB-Y1","LB-Y1","LB-Y1","Mac-AB","Mac-AB","Mac-AB","Mac-IJ","Mac-IJ","Mac-IJ","Mac-W1","Mac-W1","Mac-W1","Mac-WT19606","Mac-WT19606","Mac-WT19606","Mac-Y1","Mac-Y1","Mac-Y1"))
    # Define the colData for DESeq2
    colData <- data.frame(condition=condition, row.names=names(files))
    # -- transcript-level count data (x2) --
    # Create DESeqDataSet object
    dds <- DESeqDataSetFromTximport(txi, colData=colData, design=~condition)
    write.csv(counts(dds), file="transcript_counts.csv")
    # -- gene-level count data (x2) --
    # Read in the tx2gene map from salmon_tx2gene.tsv
    tx2gene <- read.table("salmon_tx2gene.tsv", header=FALSE, stringsAsFactors=FALSE)
    # Set the column names
    colnames(tx2gene) <- c("transcript_id", "gene_id", "gene_name")
    # Remove the gene_name column if not needed
    tx2gene <- tx2gene[,1:2]
    # Import and summarize the Salmon data with tximport
    txi <- tximport(files, type = "salmon", tx2gene = tx2gene, txOut = FALSE)
    # Continue with the DESeq2 workflow as before...
    colData <- data.frame(condition=condition, row.names=names(files))
    dds <- DESeqDataSetFromTximport(txi, colData=colData, design=~condition)
    #dds <- dds[rowSums(counts(dds) > 3) > 2, ]    #3796->????
    write.csv(counts(dds, normalized=FALSE), file="gene_counts.csv")
    
    # ---- Split the factos media and strain from condition ----
    # AdeIJK vs. AdeABC Efflux Pumps
    #     * AdeIJK is the "housekeeping" pump — always active, broadly expressed, contributing to background resistance.
    #     * AdeABC is the "emergency" pump — induced under stress or mutations, more potent in contributing to clinical multidrug resistance.
    #LB = Luria-Bertani broth (a standard rich growth medium)
    #Mac = MacConkey agar or broth (selective for Gram-negative bacteria)
    # - Growth medium   Media or Condition, GrowthMedium
    # - Bacterial strain/genotype   Strain or Isolate, Genotype, SampleType
    media <- factor(c("LB","LB","LB", "LB","LB","LB", "LB","LB","LB","LB","LB","LB","LB","LB","LB","Mac","Mac","Mac","Mac","Mac","Mac","Mac","Mac","Mac","Mac","Mac","Mac","Mac","Mac","Mac"))
    strain <- factor(c("AB","AB","AB", "IJ","IJ","IJ", "W1","W1","W1","WT19606","WT19606","WT19606","Y1","Y1","Y1","AB","AB","AB","IJ","IJ","IJ","W1","W1","W1","WT19606","WT19606","WT19606","Y1","Y1","Y1"))
    # Define the colData for DESeq2
    colData <- data.frame(media=media, strain=strain, row.names=names(files))
    # -- transcript-level count data (x2) --
    # Create DESeqDataSet object
    dds <- DESeqDataSetFromTximport(txi, colData=colData, design=~media+strain)
    write.csv(counts(dds), file="transcript_counts_media_strain.csv")
    # -- gene-level count data (x2) --
    # Read in the tx2gene map from salmon_tx2gene.tsv
    tx2gene <- read.table("salmon_tx2gene.tsv", header=FALSE, stringsAsFactors=FALSE)
    # Set the column names
    colnames(tx2gene) <- c("transcript_id", "gene_id", "gene_name")
    # Remove the gene_name column if not needed
    tx2gene <- tx2gene[,1:2]
    # Import and summarize the Salmon data with tximport
    txi <- tximport(files, type = "salmon", tx2gene = tx2gene, txOut = FALSE)
    # Continue with the DESeq2 workflow as before...
    colData <- data.frame(media=media, strain=strain, row.names=names(files))
    dds <- DESeqDataSetFromTximport(txi, colData=colData, design=~media+strain)
    #dds <- dds[rowSums(counts(dds) > 3) > 2, ]    #3796->????
    write.csv(counts(dds, normalized=FALSE), file="gene_counts_media_strain.csv")
    
    dim(counts(dds))
    head(counts(dds), 10)
    rld <- rlogTransformation(dds)
    
    # -- pca --
    png("pca.png", 1200, 800)
    plotPCA(rld, intgroup=c("condition"))
    dev.off()
    # -- heatmap --
    png("heatmap.png", 1200, 800)
    distsRL <- dist(t(assay(rld)))
    mat <- as.matrix(distsRL)
    hc <- hclust(distsRL)
    hmcol <- colorRampPalette(brewer.pal(9,"GnBu"))(100)
    heatmap.2(mat, Rowv=as.dendrogram(hc),symm=TRUE, trace="none",col = rev(hmcol), margin=c(13, 13))
    dev.off()
    
    # -- pca_media_strain --
    png("pca_media.png", 1200, 800)
    plotPCA(rld, intgroup=c("media"))
    dev.off()
    png("pca_strain.png", 1200, 800)
    plotPCA(rld, intgroup=c("strain"))
    dev.off()
    
  8. (Optional; ERROR-->need to be debugged!) ) estimate size factors and dispersion values.

    #Size Factors: These are used to normalize the read counts across different samples. The size factor for a sample accounts for differences in sequencing depth (i.e., the total number of reads) and other technical biases between samples. After normalization with size factors, the counts should be comparable across samples. Size factors are usually calculated in a way that they reflect the median or mean ratio of gene expression levels between samples, assuming that most genes are not differentially expressed.
    #Dispersion: This refers to the variability or spread of gene expression measurements. In RNA-seq data analysis, each gene has its own dispersion value, which reflects how much the counts for that gene vary between different samples, more than what would be expected just due to the Poisson variation inherent in counting. Dispersion is important for accurately modeling the data and for detecting differentially expressed genes.
    #So in summary, size factors are specific to samples (used to make counts comparable across samples), and dispersion values are specific to genes (reflecting variability in gene expression).
    
    sizeFactors(dds)
    #NULL
    # Estimate size factors
    dds <- estimateSizeFactors(dds)
    # Estimate dispersions
    dds <- estimateDispersions(dds)
    #> sizeFactors(dds)
    
    #control_r1 control_r2  HSV.d2_r1  HSV.d2_r2  HSV.d4_r1  HSV.d4_r2  HSV.d6_r1
    #2.3282468  2.0251928  1.8036883  1.3767551  0.9341929  1.0911693  0.5454526
    #HSV.d6_r2  HSV.d8_r1  HSV.d8_r2
    #0.4604461  0.5799834  0.6803681
    
    # (DEBUG) If avgTxLength is Necessary
    #To simplify the computation and ensure sizeFactors are calculated:
    assays(dds)$avgTxLength <- NULL
    dds <- estimateSizeFactors(dds)
    sizeFactors(dds)
    #If you want to retain avgTxLength but suspect it is causing issues, you can explicitly instruct DESeq2 to compute size factors without correcting for library size with average transcript lengths:
    dds <- estimateSizeFactors(dds, controlGenes = NULL, use = FALSE)
    sizeFactors(dds)
    
    # If alone with virus data, the following BUG occured:
    #Still NULL --> BUG --> using manual calculation method for sizeFactor calculation!
                        HeLa_TO_r1                      HeLa_TO_r2
                        0.9978755                       1.1092227
    data.frame(genes = rownames(dds), dispersions = dispersions(dds))
    
    #Given the raw counts, the control_r1 and control_r2 samples seem to have a much lower sequencing depth (total read count) than the other samples. Therefore, when normalization methods are applied, the normalization factors for these control samples will be relatively high, boosting the normalized counts.
    1/0.9978755=1.002129023
    1/1.1092227=
    #bamCoverage --bam ../markDuplicates/${sample}Aligned.sortedByCoord.out.bam -o ${sample}_norm.bw --binSize 10 --scaleFactor  --effectiveGenomeSize 2864785220
    bamCoverage --bam ../markDuplicates/HeLa_TO_r1Aligned.sortedByCoord.out.markDups.bam -o HeLa_TO_r1.bw --binSize 10 --scaleFactor 1.002129023     --effectiveGenomeSize 2864785220
    bamCoverage --bam ../markDuplicates/HeLa_TO_r2Aligned.sortedByCoord.out.markDups.bam -o HeLa_TO_r2.bw --binSize 10 --scaleFactor  0.901532217        --effectiveGenomeSize 2864785220
    
    raw_counts <- counts(dds)
    normalized_counts <- counts(dds, normalized=TRUE)
    #write.table(raw_counts, file="raw_counts.txt", sep="\t", quote=F, col.names=NA)
    #write.table(normalized_counts, file="normalized_counts.txt", sep="\t", quote=F, col.names=NA)
    #convert bam to bigwig using deepTools by feeding inverse of DESeq’s size Factor
    estimSf <- function (cds){
        # Get the count matrix
        cts <- counts(cds)
        # Compute the geometric mean
        geomMean <- function(x) prod(x)^(1/length(x))
        # Compute the geometric mean over the line
        gm.mean  <-  apply(cts, 1, geomMean)
        # Zero values are set to NA (avoid subsequentcdsdivision by 0)
        gm.mean[gm.mean == 0] <- NA
        # Divide each line by its corresponding geometric mean
        # sweep(x, MARGIN, STATS, FUN = "-", check.margin = TRUE, ...)
        # MARGIN: 1 or 2 (line or columns)
        # STATS: a vector of length nrow(x) or ncol(x), depending on MARGIN
        # FUN: the function to be applied
        cts <- sweep(cts, 1, gm.mean, FUN="/")
        # Compute the median over the columns
        med <- apply(cts, 2, median, na.rm=TRUE)
        # Return the scaling factor
        return(med)
    }
    #https://dputhier.github.io/ASG/practicals/rnaseq_diff_Snf2/rnaseq_diff_Snf2.html
    #http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#data-transformations-and-visualization
    #https://hbctraining.github.io/DGE_workshop/lessons/02_DGE_count_normalization.html
    #https://hbctraining.github.io/DGE_workshop/lessons/04_DGE_DESeq2_analysis.html
    #https://genviz.org/module-04-expression/0004/02/01/DifferentialExpression/
    #DESeq2’s median of ratios [1]
    #EdgeR’s trimmed mean of M values (TMM) [2]
    #http://www.nathalievialaneix.eu/doc/html/TP1_normalization.html  #very good website!
    test_normcount <- sweep(raw_counts, 2, sizeFactors(dds), "/")
    sum(test_normcount != normalized_counts)
    
  9. Select the differentially expressed genes

    #https://galaxyproject.eu/posts/2020/08/22/three-steps-to-galaxify-your-tool/
    #https://www.biostars.org/p/282295/
    #https://www.biostars.org/p/335751/
    #> dds$condition
    #LB-AB       LB-IJ       LB-W1       LB-WT19606  LB-Y1       Mac-AB     Mac-IJ      Mac-W1      Mac-WT19606 Mac-Y1
    #CONSOLE: mkdir star_salmon/degenes
    
    setwd("degenes")
    #---- relevel to control ----
    dds$condition <- relevel(dds$condition, "LB-WT19606")
    dds = DESeq(dds, betaPrior=FALSE)
    resultsNames(dds)
    clist <- c("LB.AB_vs_LB.WT19606","LB.IJ_vs_LB.WT19606","LB.W1_vs_LB.WT19606","LB.Y1_vs_LB.WT19606")
    
    dds$condition <- relevel(dds$condition, "Mac-WT19606")
    dds = DESeq(dds, betaPrior=FALSE)
    resultsNames(dds)
    clist <- c("Mac.AB_vs_Mac.WT19606","Mac.IJ_vs_Mac.WT19606","Mac.W1_vs_Mac.WT19606","Mac.Y1_vs_Mac.WT19606")
    
    # - 如果你的实验是关注细菌在没有选择性压力下的生长、基因表达或一般行为,LB 是更好的对照。
    # - 如果你希望研究细菌在选择性压力下的行为(例如,针对革兰氏阴性细菌、测试抗生素耐药性或区分乳糖发酵菌),那么 MacConkey 更适合作为对照。
    dds$media <- relevel(dds$media, "LB")
    dds = DESeq(dds, betaPrior=FALSE)
    resultsNames(dds)
    clist <- c("Mac_vs_LB")
    
    dds$media <- relevel(dds$media, "Mac")
    dds = DESeq(dds, betaPrior=FALSE)
    resultsNames(dds)
    clist <- c("LB_vs_Mac")
    
    for (i in clist) {
      #contrast = paste("condition", i, sep="_")
      contrast = paste("media", i, sep="_")
      res = results(dds, name=contrast)
      res <- res[!is.na(res$log2FoldChange),]
      res_df <- as.data.frame(res)
    
      write.csv(as.data.frame(res_df[order(res_df$pvalue),]), file = paste(i, "all.txt", sep="-"))
      up <- subset(res_df, padj<=0.05 & log2FoldChange>=2)
      down <- subset(res_df, padj<=0.05 & log2FoldChange<=-2)
      write.csv(as.data.frame(up[order(up$log2FoldChange,decreasing=TRUE),]), file = paste(i, "up.txt", sep="-"))
      write.csv(as.data.frame(down[order(abs(down$log2FoldChange),decreasing=TRUE),]), file = paste(i, "down.txt", sep="-"))
    }
    
    # -- Under host-env --
    grep -P "\tgene\t" CP059040.gff > CP059040_gene.gff
    python3 ~/Scripts/replace_gene_names.py /home/jhuang/DATA/Data_Tam_RNAseq_2024_AUM_MHB_Urine/CP059040_gene.gff LB.AB_vs_LB.WT19606-all.txt LB.AB_vs_LB.WT19606-all.csv
    python3 ~/Scripts/replace_gene_names.py /home/jhuang/DATA/Data_Tam_RNAseq_2024_AUM_MHB_Urine/CP059040_gene.gff LB.AB_vs_LB.WT19606-up.txt LB.AB_vs_LB.WT19606-up.csv
    python3 ~/Scripts/replace_gene_names.py /home/jhuang/DATA/Data_Tam_RNAseq_2024_AUM_MHB_Urine/CP059040_gene.gff LB.AB_vs_LB.WT19606-down.txt LB.AB_vs_LB.WT19606-down.csv
    python3 ~/Scripts/replace_gene_names.py /home/jhuang/DATA/Data_Tam_RNAseq_2024_AUM_MHB_Urine/CP059040_gene.gff LB.IJ_vs_LB.WT19606-all.txt LB.IJ_vs_LB.WT19606-all.csv
    python3 ~/Scripts/replace_gene_names.py /home/jhuang/DATA/Data_Tam_RNAseq_2024_AUM_MHB_Urine/CP059040_gene.gff LB.IJ_vs_LB.WT19606-up.txt LB.IJ_vs_LB.WT19606-up.csv
    python3 ~/Scripts/replace_gene_names.py /home/jhuang/DATA/Data_Tam_RNAseq_2024_AUM_MHB_Urine/CP059040_gene.gff LB.IJ_vs_LB.WT19606-down.txt LB.IJ_vs_LB.WT19606-down.csv
    python3 ~/Scripts/replace_gene_names.py /home/jhuang/DATA/Data_Tam_RNAseq_2024_AUM_MHB_Urine/CP059040_gene.gff LB.W1_vs_LB.WT19606-all.txt LB.W1_vs_LB.WT19606-all.csv
    python3 ~/Scripts/replace_gene_names.py /home/jhuang/DATA/Data_Tam_RNAseq_2024_AUM_MHB_Urine/CP059040_gene.gff LB.W1_vs_LB.WT19606-up.txt LB.W1_vs_LB.WT19606-up.csv
    python3 ~/Scripts/replace_gene_names.py /home/jhuang/DATA/Data_Tam_RNAseq_2024_AUM_MHB_Urine/CP059040_gene.gff LB.W1_vs_LB.WT19606-down.txt LB.W1_vs_LB.WT19606-down.csv
    python3 ~/Scripts/replace_gene_names.py /home/jhuang/DATA/Data_Tam_RNAseq_2024_AUM_MHB_Urine/CP059040_gene.gff LB.Y1_vs_LB.WT19606-all.txt LB.Y1_vs_LB.WT19606-all.csv
    python3 ~/Scripts/replace_gene_names.py /home/jhuang/DATA/Data_Tam_RNAseq_2024_AUM_MHB_Urine/CP059040_gene.gff LB.Y1_vs_LB.WT19606-up.txt LB.Y1_vs_LB.WT19606-up.csv
    python3 ~/Scripts/replace_gene_names.py /home/jhuang/DATA/Data_Tam_RNAseq_2024_AUM_MHB_Urine/CP059040_gene.gff LB.Y1_vs_LB.WT19606-down.txt LB.Y1_vs_LB.WT19606-down.csv
    python3 ~/Scripts/replace_gene_names.py /home/jhuang/DATA/Data_Tam_RNAseq_2024_AUM_MHB_Urine/CP059040_gene.gff Mac.AB_vs_Mac.WT19606-all.txt Mac.AB_vs_Mac.WT19606-all.csv
    python3 ~/Scripts/replace_gene_names.py /home/jhuang/DATA/Data_Tam_RNAseq_2024_AUM_MHB_Urine/CP059040_gene.gff Mac.AB_vs_Mac.WT19606-up.txt Mac.AB_vs_Mac.WT19606-up.csv
    python3 ~/Scripts/replace_gene_names.py /home/jhuang/DATA/Data_Tam_RNAseq_2024_AUM_MHB_Urine/CP059040_gene.gff Mac.AB_vs_Mac.WT19606-down.txt Mac.AB_vs_Mac.WT19606-down.csv
    python3 ~/Scripts/replace_gene_names.py /home/jhuang/DATA/Data_Tam_RNAseq_2024_AUM_MHB_Urine/CP059040_gene.gff Mac.IJ_vs_Mac.WT19606-all.txt Mac.IJ_vs_Mac.WT19606-all.csv
    python3 ~/Scripts/replace_gene_names.py /home/jhuang/DATA/Data_Tam_RNAseq_2024_AUM_MHB_Urine/CP059040_gene.gff Mac.IJ_vs_Mac.WT19606-up.txt Mac.IJ_vs_Mac.WT19606-up.csv
    python3 ~/Scripts/replace_gene_names.py /home/jhuang/DATA/Data_Tam_RNAseq_2024_AUM_MHB_Urine/CP059040_gene.gff Mac.IJ_vs_Mac.WT19606-down.txt Mac.IJ_vs_Mac.WT19606-down.csv
    python3 ~/Scripts/replace_gene_names.py /home/jhuang/DATA/Data_Tam_RNAseq_2024_AUM_MHB_Urine/CP059040_gene.gff Mac.W1_vs_Mac.WT19606-all.txt Mac.W1_vs_Mac.WT19606-all.csv
    python3 ~/Scripts/replace_gene_names.py /home/jhuang/DATA/Data_Tam_RNAseq_2024_AUM_MHB_Urine/CP059040_gene.gff Mac.W1_vs_Mac.WT19606-up.txt Mac.W1_vs_Mac.WT19606-up.csv
    python3 ~/Scripts/replace_gene_names.py /home/jhuang/DATA/Data_Tam_RNAseq_2024_AUM_MHB_Urine/CP059040_gene.gff Mac.W1_vs_Mac.WT19606-down.txt Mac.W1_vs_Mac.WT19606-down.csv
    python3 ~/Scripts/replace_gene_names.py /home/jhuang/DATA/Data_Tam_RNAseq_2024_AUM_MHB_Urine/CP059040_gene.gff Mac.Y1_vs_Mac.WT19606-all.txt Mac.Y1_vs_Mac.WT19606-all.csv
    python3 ~/Scripts/replace_gene_names.py /home/jhuang/DATA/Data_Tam_RNAseq_2024_AUM_MHB_Urine/CP059040_gene.gff Mac.Y1_vs_Mac.WT19606-up.txt Mac.Y1_vs_Mac.WT19606-up.csv
    python3 ~/Scripts/replace_gene_names.py /home/jhuang/DATA/Data_Tam_RNAseq_2024_AUM_MHB_Urine/CP059040_gene.gff Mac.Y1_vs_Mac.WT19606-down.txt Mac.Y1_vs_Mac.WT19606-down.csv
    python3 ~/Scripts/replace_gene_names.py /home/jhuang/DATA/Data_Tam_RNAseq_2024_AUM_MHB_Urine/CP059040_gene.gff Mac_vs_LB-all.txt Mac_vs_LB-all.csv
    python3 ~/Scripts/replace_gene_names.py /home/jhuang/DATA/Data_Tam_RNAseq_2024_AUM_MHB_Urine/CP059040_gene.gff Mac_vs_LB-up.txt Mac_vs_LB-up.csv
    python3 ~/Scripts/replace_gene_names.py /home/jhuang/DATA/Data_Tam_RNAseq_2024_AUM_MHB_Urine/CP059040_gene.gff Mac_vs_LB-down.txt Mac_vs_LB-down.csv
    python3 ~/Scripts/replace_gene_names.py /home/jhuang/DATA/Data_Tam_RNAseq_2024_AUM_MHB_Urine/CP059040_gene.gff LB_vs_Mac-all.txt LB_vs_Mac-all.csv
    python3 ~/Scripts/replace_gene_names.py /home/jhuang/DATA/Data_Tam_RNAseq_2024_AUM_MHB_Urine/CP059040_gene.gff LB_vs_Mac-up.txt LB_vs_Mac-up.csv
    python3 ~/Scripts/replace_gene_names.py /home/jhuang/DATA/Data_Tam_RNAseq_2024_AUM_MHB_Urine/CP059040_gene.gff LB_vs_Mac-down.txt LB_vs_Mac-down.csv
    
    # ---- Mac_vs_LB ----
    res <- read.csv("Mac_vs_LB-all.csv")
    # Replace empty GeneName with modified GeneID
    res$GeneName <- ifelse(
      res$GeneName == "" | is.na(res$GeneName),
      gsub("gene-", "", res$GeneID),
      res$GeneName
    )
    duplicated_genes <- res[duplicated(res$GeneName), "GeneName"]
    #print(duplicated_genes)
    # [1] "bfr"  "lipA" "ahpF" "pcaF" "alr"  "pcaD" "cydB" "lpdA" "pgaC" "ppk1"
    #[11] "pcaF" "tuf"  "galE" "murI" "yccS" "rrf"  "rrf"  "arsB" "ptsP" "umuD"
    #[21] "map"  "pgaB" "rrf"  "rrf"  "rrf"  "pgaD" "uraH" "benE"
    #res[res$GeneName == "bfr", ]
    
    #1st_strategy First occurrence is kept and Subsequent duplicates are removed
    #res <- res[!duplicated(res$GeneName), ]
    #2nd_strategy keep the row with the smallest padj value for each GeneName
    res <- res %>%
      group_by(GeneName) %>%
      slice_min(padj, with_ties = FALSE) %>%
      ungroup()
    res <- as.data.frame(res)
    # Sort res first by padj (ascending) and then by log2FoldChange (descending)
    res <- res[order(res$padj, -res$log2FoldChange), ]
    
    # Assuming res is your dataframe and already processed
    # Filter up-regulated genes: log2FoldChange > 2 and padj < 1e-2
    up_regulated <- res[res$log2FoldChange > 2 & res$padj < 1e-2, ]
    # Filter down-regulated genes: log2FoldChange < -2 and padj < 1e-2
    down_regulated <- res[res$log2FoldChange < -2 & res$padj < 1e-2, ]
    # Create a new workbook
    wb <- createWorkbook()
    # Add the complete dataset as the first sheet
    addWorksheet(wb, "Complete_Data")
    writeData(wb, "Complete_Data", res)
    # Add the up-regulated genes as the second sheet
    addWorksheet(wb, "Up_Regulated")
    writeData(wb, "Up_Regulated", up_regulated)
    # Add the down-regulated genes as the third sheet
    addWorksheet(wb, "Down_Regulated")
    writeData(wb, "Down_Regulated", down_regulated)
    # Save the workbook to a file
    saveWorkbook(wb, "Gene_Expression_Mac_vs_LB.xlsx", overwrite = TRUE)
    
    # Set the 'GeneName' column as row.names
    rownames(res) <- res$GeneName
    # Drop the 'GeneName' column since it's now the row names
    res$GeneName <- NULL
    head(res)
    
    ## Ensure the data frame matches the expected format
    ## For example, it should have columns: log2FoldChange, padj, etc.
    #res <- as.data.frame(res)
    ## Remove rows with NA in log2FoldChange (if needed)
    #res <- res[!is.na(res$log2FoldChange),]
    
    # Replace padj = 0 with a small value
    res$padj[res$padj == 0] <- 1e-150
    
    #library(EnhancedVolcano)
    # Assuming res is already sorted and processed
    png("Mac_vs_LB.png", width=1200, height=2000)
    #max.overlaps = 10
    EnhancedVolcano(res,
                    lab = rownames(res),
                    x = 'log2FoldChange',
                    y = 'padj',
                    pCutoff = 1e-2,
                    FCcutoff = 2,
                    title = '',
                    subtitleLabSize = 18,
                    pointSize = 3.0,
                    labSize = 5.0,
                    colAlpha = 1,
                    legendIconSize = 4.0,
                    drawConnectors = TRUE,
                    widthConnectors = 0.5,
                    colConnectors = 'black',
                    subtitle = expression("Mac versus LB"))
    dev.off()
    
    # ---- LB.AB_vs_LB.WT19606 ----
    res <- read.csv("LB.AB_vs_LB.WT19606-all.csv")
    # Replace empty GeneName with modified GeneID
    res$GeneName <- ifelse(
      res$GeneName == "" | is.na(res$GeneName),
      gsub("gene-", "", res$GeneID),
      res$GeneName
    )
    duplicated_genes <- res[duplicated(res$GeneName), "GeneName"]
    
    res <- res %>%
      group_by(GeneName) %>%
      slice_min(padj, with_ties = FALSE) %>%
      ungroup()
    res <- as.data.frame(res)
    # Sort res first by padj (ascending) and then by log2FoldChange (descending)
    res <- res[order(res$padj, -res$log2FoldChange), ]
    
    # Assuming res is your dataframe and already processed
    # Filter up-regulated genes: log2FoldChange > 2 and padj < 1e-2
    up_regulated <- res[res$log2FoldChange > 2 & res$padj < 1e-2, ]
    # Filter down-regulated genes: log2FoldChange < -2 and padj < 1e-2
    down_regulated <- res[res$log2FoldChange < -2 & res$padj < 1e-2, ]
    # Create a new workbook
    wb <- createWorkbook()
    # Add the complete dataset as the first sheet
    addWorksheet(wb, "Complete_Data")
    writeData(wb, "Complete_Data", res)
    # Add the up-regulated genes as the second sheet
    addWorksheet(wb, "Up_Regulated")
    writeData(wb, "Up_Regulated", up_regulated)
    # Add the down-regulated genes as the third sheet
    addWorksheet(wb, "Down_Regulated")
    writeData(wb, "Down_Regulated", down_regulated)
    # Save the workbook to a file
    saveWorkbook(wb, "Gene_Expression_LB.AB_vs_LB.WT19606.xlsx", overwrite = TRUE)
    
    # Set the 'GeneName' column as row.names
    rownames(res) <- res$GeneName
    # Drop the 'GeneName' column since it's now the row names
    res$GeneName <- NULL
    head(res)
    
    ## Ensure the data frame matches the expected format
    ## For example, it should have columns: log2FoldChange, padj, etc.
    #res <- as.data.frame(res)
    ## Remove rows with NA in log2FoldChange (if needed)
    #res <- res[!is.na(res$log2FoldChange),]
    
    # Replace padj = 0 with a small value
    res$padj[res$padj == 0] <- 1e-12
    
    #library(EnhancedVolcano)
    # Assuming res is already sorted and processed
    png("LB.AB_vs_LB.WT19606.png", width=1200, height=1200)
    #max.overlaps = 10
    EnhancedVolcano(res,
                    lab = rownames(res),
                    x = 'log2FoldChange',
                    y = 'padj',
                    pCutoff = 1e-2,
                    FCcutoff = 2,
                    title = '',
                    subtitleLabSize = 18,
                    pointSize = 3.0,
                    labSize = 5.0,
                    colAlpha = 1,
                    legendIconSize = 4.0,
                    drawConnectors = TRUE,
                    widthConnectors = 0.5,
                    colConnectors = 'black',
                    subtitle = expression("LB.AB versus LB.WT19606"))
    dev.off()
    
    # ---- LB.IJ_vs_LB.WT19606 ----
    res <- read.csv("LB.IJ_vs_LB.WT19606-all.csv")
    # Replace empty GeneName with modified GeneID
    res$GeneName <- ifelse(
      res$GeneName == "" | is.na(res$GeneName),
      gsub("gene-", "", res$GeneID),
      res$GeneName
    )
    duplicated_genes <- res[duplicated(res$GeneName), "GeneName"]
    
    res <- res %>%
      group_by(GeneName) %>%
      slice_min(padj, with_ties = FALSE) %>%
      ungroup()
    res <- as.data.frame(res)
    # Sort res first by padj (ascending) and then by log2FoldChange (descending)
    res <- res[order(res$padj, -res$log2FoldChange), ]
    
    # Assuming res is your dataframe and already processed
    # Filter up-regulated genes: log2FoldChange > 2 and padj < 1e-2
    up_regulated <- res[res$log2FoldChange > 2 & res$padj < 1e-2, ]
    # Filter down-regulated genes: log2FoldChange < -2 and padj < 1e-2
    down_regulated <- res[res$log2FoldChange < -2 & res$padj < 1e-2, ]
    # Create a new workbook
    wb <- createWorkbook()
    # Add the complete dataset as the first sheet
    addWorksheet(wb, "Complete_Data")
    writeData(wb, "Complete_Data", res)
    # Add the up-regulated genes as the second sheet
    addWorksheet(wb, "Up_Regulated")
    writeData(wb, "Up_Regulated", up_regulated)
    # Add the down-regulated genes as the third sheet
    addWorksheet(wb, "Down_Regulated")
    writeData(wb, "Down_Regulated", down_regulated)
    # Save the workbook to a file
    saveWorkbook(wb, "Gene_Expression_LB.IJ_vs_LB.WT19606.xlsx", overwrite = TRUE)
    
    # Set the 'GeneName' column as row.names
    rownames(res) <- res$GeneName
    # Drop the 'GeneName' column since it's now the row names
    res$GeneName <- NULL
    head(res)
    
    ## Ensure the data frame matches the expected format
    ## For example, it should have columns: log2FoldChange, padj, etc.
    #res <- as.data.frame(res)
    ## Remove rows with NA in log2FoldChange (if needed)
    #res <- res[!is.na(res$log2FoldChange),]
    
    # Replace padj = 0 with a small value
    res$padj[res$padj == 0] <- 1e-12
    
    #library(EnhancedVolcano)
    # Assuming res is already sorted and processed
    png("LB.IJ_vs_LB.WT19606.png", width=1200, height=1200)
    #max.overlaps = 10
    EnhancedVolcano(res,
                    lab = rownames(res),
                    x = 'log2FoldChange',
                    y = 'padj',
                    pCutoff = 1e-2,
                    FCcutoff = 2,
                    title = '',
                    subtitleLabSize = 18,
                    pointSize = 3.0,
                    labSize = 5.0,
                    colAlpha = 1,
                    legendIconSize = 4.0,
                    drawConnectors = TRUE,
                    widthConnectors = 0.5,
                    colConnectors = 'black',
                    subtitle = expression("LB.IJ versus LB.WT19606"))
    dev.off()
    
    # ---- LB.W1_vs_LB.WT19606 ----
    res <- read.csv("LB.W1_vs_LB.WT19606-all.csv")
    # Replace empty GeneName with modified GeneID
    res$GeneName <- ifelse(
      res$GeneName == "" | is.na(res$GeneName),
      gsub("gene-", "", res$GeneID),
      res$GeneName
    )
    duplicated_genes <- res[duplicated(res$GeneName), "GeneName"]
    
    res <- res %>%
      group_by(GeneName) %>%
      slice_min(padj, with_ties = FALSE) %>%
      ungroup()
    res <- as.data.frame(res)
    # Sort res first by padj (ascending) and then by log2FoldChange (descending)
    res <- res[order(res$padj, -res$log2FoldChange), ]
    
    # Assuming res is your dataframe and already processed
    # Filter up-regulated genes: log2FoldChange > 2 and padj < 1e-2
    up_regulated <- res[res$log2FoldChange > 2 & res$padj < 1e-2, ]
    # Filter down-regulated genes: log2FoldChange < -2 and padj < 1e-2
    down_regulated <- res[res$log2FoldChange < -2 & res$padj < 1e-2, ]
    # Create a new workbook
    wb <- createWorkbook()
    # Add the complete dataset as the first sheet
    addWorksheet(wb, "Complete_Data")
    writeData(wb, "Complete_Data", res)
    # Add the up-regulated genes as the second sheet
    addWorksheet(wb, "Up_Regulated")
    writeData(wb, "Up_Regulated", up_regulated)
    # Add the down-regulated genes as the third sheet
    addWorksheet(wb, "Down_Regulated")
    writeData(wb, "Down_Regulated", down_regulated)
    # Save the workbook to a file
    saveWorkbook(wb, "Gene_Expression_LB.W1_vs_LB.WT19606.xlsx", overwrite = TRUE)
    
    # Set the 'GeneName' column as row.names
    rownames(res) <- res$GeneName
    # Drop the 'GeneName' column since it's now the row names
    res$GeneName <- NULL
    head(res)
    
    ## Ensure the data frame matches the expected format
    ## For example, it should have columns: log2FoldChange, padj, etc.
    #res <- as.data.frame(res)
    ## Remove rows with NA in log2FoldChange (if needed)
    #res <- res[!is.na(res$log2FoldChange),]
    
    # Replace padj = 0 with a small value
    res$padj[res$padj == 0] <- 1e-12
    
    #library(EnhancedVolcano)
    # Assuming res is already sorted and processed
    png("LB.W1_vs_LB.WT19606.png", width=1200, height=1200)
    #max.overlaps = 10
    EnhancedVolcano(res,
                    lab = rownames(res),
                    x = 'log2FoldChange',
                    y = 'padj',
                    pCutoff = 1e-2,
                    FCcutoff = 2,
                    title = '',
                    subtitleLabSize = 18,
                    pointSize = 3.0,
                    labSize = 5.0,
                    colAlpha = 1,
                    legendIconSize = 4.0,
                    drawConnectors = TRUE,
                    widthConnectors = 0.5,
                    colConnectors = 'black',
                    subtitle = expression("LB.W1 versus LB.WT19606"))
    dev.off()
    
    # ---- LB.Y1_vs_LB.WT19606 ----
    res <- read.csv("LB.Y1_vs_LB.WT19606-all.csv")
    # Replace empty GeneName with modified GeneID
    res$GeneName <- ifelse(
      res$GeneName == "" | is.na(res$GeneName),
      gsub("gene-", "", res$GeneID),
      res$GeneName
    )
    duplicated_genes <- res[duplicated(res$GeneName), "GeneName"]
    
    res <- res %>%
      group_by(GeneName) %>%
      slice_min(padj, with_ties = FALSE) %>%
      ungroup()
    res <- as.data.frame(res)
    # Sort res first by padj (ascending) and then by log2FoldChange (descending)
    res <- res[order(res$padj, -res$log2FoldChange), ]
    
    # Assuming res is your dataframe and already processed
    # Filter up-regulated genes: log2FoldChange > 2 and padj < 1e-2
    up_regulated <- res[res$log2FoldChange > 2 & res$padj < 1e-2, ]
    # Filter down-regulated genes: log2FoldChange < -2 and padj < 1e-2
    down_regulated <- res[res$log2FoldChange < -2 & res$padj < 1e-2, ]
    # Create a new workbook
    wb <- createWorkbook()
    # Add the complete dataset as the first sheet
    addWorksheet(wb, "Complete_Data")
    writeData(wb, "Complete_Data", res)
    # Add the up-regulated genes as the second sheet
    addWorksheet(wb, "Up_Regulated")
    writeData(wb, "Up_Regulated", up_regulated)
    # Add the down-regulated genes as the third sheet
    addWorksheet(wb, "Down_Regulated")
    writeData(wb, "Down_Regulated", down_regulated)
    # Save the workbook to a file
    saveWorkbook(wb, "Gene_Expression_LB.Y1_vs_LB.WT19606.xlsx", overwrite = TRUE)
    
    # Set the 'GeneName' column as row.names
    rownames(res) <- res$GeneName
    # Drop the 'GeneName' column since it's now the row names
    res$GeneName <- NULL
    head(res)
    
    ## Ensure the data frame matches the expected format
    ## For example, it should have columns: log2FoldChange, padj, etc.
    #res <- as.data.frame(res)
    ## Remove rows with NA in log2FoldChange (if needed)
    #res <- res[!is.na(res$log2FoldChange),]
    
    # Replace padj = 0 with a small value
    res$padj[res$padj == 0] <- 1e-12
    
    #library(EnhancedVolcano)
    # Assuming res is already sorted and processed
    png("LB.Y1_vs_LB.WT19606.png", width=1200, height=1200)
    #max.overlaps = 10
    EnhancedVolcano(res,
                    lab = rownames(res),
                    x = 'log2FoldChange',
                    y = 'padj',
                    pCutoff = 1e-2,
                    FCcutoff = 2,
                    title = '',
                    subtitleLabSize = 18,
                    pointSize = 3.0,
                    labSize = 5.0,
                    colAlpha = 1,
                    legendIconSize = 4.0,
                    drawConnectors = TRUE,
                    widthConnectors = 0.5,
                    colConnectors = 'black',
                    subtitle = expression("LB.Y1 versus LB.WT19606"))
    dev.off()
    
    # ---- Mac.AB_vs_Mac.WT19606 ----
    res <- read.csv("Mac.AB_vs_Mac.WT19606-all.csv")
    # Replace empty GeneName with modified GeneID
    res$GeneName <- ifelse(
      res$GeneName == "" | is.na(res$GeneName),
      gsub("gene-", "", res$GeneID),
      res$GeneName
    )
    duplicated_genes <- res[duplicated(res$GeneName), "GeneName"]
    
    res <- res %>%
      group_by(GeneName) %>%
      slice_min(padj, with_ties = FALSE) %>%
      ungroup()
    res <- as.data.frame(res)
    # Sort res first by padj (ascending) and then by log2FoldChange (descending)
    res <- res[order(res$padj, -res$log2FoldChange), ]
    
    # Assuming res is your dataframe and already processed
    # Filter up-regulated genes: log2FoldChange > 2 and padj < 1e-2
    up_regulated <- res[res$log2FoldChange > 2 & res$padj < 1e-2, ]
    # Filter down-regulated genes: log2FoldChange < -2 and padj < 1e-2
    down_regulated <- res[res$log2FoldChange < -2 & res$padj < 1e-2, ]
    # Create a new workbook
    wb <- createWorkbook()
    # Add the complete dataset as the first sheet
    addWorksheet(wb, "Complete_Data")
    writeData(wb, "Complete_Data", res)
    # Add the up-regulated genes as the second sheet
    addWorksheet(wb, "Up_Regulated")
    writeData(wb, "Up_Regulated", up_regulated)
    # Add the down-regulated genes as the third sheet
    addWorksheet(wb, "Down_Regulated")
    writeData(wb, "Down_Regulated", down_regulated)
    # Save the workbook to a file
    saveWorkbook(wb, "Gene_Expression_Mac.AB_vs_Mac.WT19606.xlsx", overwrite = TRUE)
    
    # Set the 'GeneName' column as row.names
    rownames(res) <- res$GeneName
    # Drop the 'GeneName' column since it's now the row names
    res$GeneName <- NULL
    head(res)
    
    ## Ensure the data frame matches the expected format
    ## For example, it should have columns: log2FoldChange, padj, etc.
    #res <- as.data.frame(res)
    ## Remove rows with NA in log2FoldChange (if needed)
    #res <- res[!is.na(res$log2FoldChange),]
    
    # Replace padj = 0 with a small value
    res$padj[res$padj == 0] <- 1e-12
    
    #library(EnhancedVolcano)
    # Assuming res is already sorted and processed
    png("Mac.AB_vs_Mac.WT19606.png", width=1200, height=1200)
    #max.overlaps = 10
    EnhancedVolcano(res,
                    lab = rownames(res),
                    x = 'log2FoldChange',
                    y = 'padj',
                    pCutoff = 1e-2,
                    FCcutoff = 2,
                    title = '',
                    subtitleLabSize = 18,
                    pointSize = 3.0,
                    labSize = 5.0,
                    colAlpha = 1,
                    legendIconSize = 4.0,
                    drawConnectors = TRUE,
                    widthConnectors = 0.5,
                    colConnectors = 'black',
                    subtitle = expression("Mac.AB versus Mac.WT19606"))
    dev.off()
    
    # ---- Mac.IJ_vs_Mac.WT19606 ----
    res <- read.csv("Mac.IJ_vs_Mac.WT19606-all.csv")
    # Replace empty GeneName with modified GeneID
    res$GeneName <- ifelse(
      res$GeneName == "" | is.na(res$GeneName),
      gsub("gene-", "", res$GeneID),
      res$GeneName
    )
    duplicated_genes <- res[duplicated(res$GeneName), "GeneName"]
    
    res <- res %>%
      group_by(GeneName) %>%
      slice_min(padj, with_ties = FALSE) %>%
      ungroup()
    res <- as.data.frame(res)
    # Sort res first by padj (ascending) and then by log2FoldChange (descending)
    res <- res[order(res$padj, -res$log2FoldChange), ]
    
    # Assuming res is your dataframe and already processed
    # Filter up-regulated genes: log2FoldChange > 2 and padj < 1e-2
    up_regulated <- res[res$log2FoldChange > 2 & res$padj < 1e-2, ]
    # Filter down-regulated genes: log2FoldChange < -2 and padj < 1e-2
    down_regulated <- res[res$log2FoldChange < -2 & res$padj < 1e-2, ]
    # Create a new workbook
    wb <- createWorkbook()
    # Add the complete dataset as the first sheet
    addWorksheet(wb, "Complete_Data")
    writeData(wb, "Complete_Data", res)
    # Add the up-regulated genes as the second sheet
    addWorksheet(wb, "Up_Regulated")
    writeData(wb, "Up_Regulated", up_regulated)
    # Add the down-regulated genes as the third sheet
    addWorksheet(wb, "Down_Regulated")
    writeData(wb, "Down_Regulated", down_regulated)
    # Save the workbook to a file
    saveWorkbook(wb, "Gene_Expression_Mac.IJ_vs_Mac.WT19606.xlsx", overwrite = TRUE)
    
    # Set the 'GeneName' column as row.names
    rownames(res) <- res$GeneName
    # Drop the 'GeneName' column since it's now the row names
    res$GeneName <- NULL
    head(res)
    
    ## Ensure the data frame matches the expected format
    ## For example, it should have columns: log2FoldChange, padj, etc.
    #res <- as.data.frame(res)
    ## Remove rows with NA in log2FoldChange (if needed)
    #res <- res[!is.na(res$log2FoldChange),]
    
    # Replace padj = 0 with a small value
    res$padj[res$padj == 0] <- 1e-12
    
    #library(EnhancedVolcano)
    # Assuming res is already sorted and processed
    png("Mac.IJ_vs_Mac.WT19606.png", width=1200, height=1200)
    #max.overlaps = 10
    EnhancedVolcano(res,
                    lab = rownames(res),
                    x = 'log2FoldChange',
                    y = 'padj',
                    pCutoff = 1e-2,
                    FCcutoff = 2,
                    title = '',
                    subtitleLabSize = 18,
                    pointSize = 3.0,
                    labSize = 5.0,
                    colAlpha = 1,
                    legendIconSize = 4.0,
                    drawConnectors = TRUE,
                    widthConnectors = 0.5,
                    colConnectors = 'black',
                    subtitle = expression("Mac.IJ versus Mac.WT19606"))
    dev.off()
    
    # ---- Mac.W1_vs_Mac.WT19606 ----
    res <- read.csv("Mac.W1_vs_Mac.WT19606-all.csv")
    # Replace empty GeneName with modified GeneID
    res$GeneName <- ifelse(
      res$GeneName == "" | is.na(res$GeneName),
      gsub("gene-", "", res$GeneID),
      res$GeneName
    )
    duplicated_genes <- res[duplicated(res$GeneName), "GeneName"]
    
    res <- res %>%
      group_by(GeneName) %>%
      slice_min(padj, with_ties = FALSE) %>%
      ungroup()
    res <- as.data.frame(res)
    # Sort res first by padj (ascending) and then by log2FoldChange (descending)
    res <- res[order(res$padj, -res$log2FoldChange), ]
    
    # Assuming res is your dataframe and already processed
    # Filter up-regulated genes: log2FoldChange > 2 and padj < 1e-2
    up_regulated <- res[res$log2FoldChange > 2 & res$padj < 1e-2, ]
    # Filter down-regulated genes: log2FoldChange < -2 and padj < 1e-2
    down_regulated <- res[res$log2FoldChange < -2 & res$padj < 1e-2, ]
    # Create a new workbook
    wb <- createWorkbook()
    # Add the complete dataset as the first sheet
    addWorksheet(wb, "Complete_Data")
    writeData(wb, "Complete_Data", res)
    # Add the up-regulated genes as the second sheet
    addWorksheet(wb, "Up_Regulated")
    writeData(wb, "Up_Regulated", up_regulated)
    # Add the down-regulated genes as the third sheet
    addWorksheet(wb, "Down_Regulated")
    writeData(wb, "Down_Regulated", down_regulated)
    # Save the workbook to a file
    saveWorkbook(wb, "Gene_Expression_Mac.W1_vs_Mac.WT19606.xlsx", overwrite = TRUE)
    
    # Set the 'GeneName' column as row.names
    rownames(res) <- res$GeneName
    # Drop the 'GeneName' column since it's now the row names
    res$GeneName <- NULL
    head(res)
    
    ## Ensure the data frame matches the expected format
    ## For example, it should have columns: log2FoldChange, padj, etc.
    #res <- as.data.frame(res)
    ## Remove rows with NA in log2FoldChange (if needed)
    #res <- res[!is.na(res$log2FoldChange),]
    
    # Replace padj = 0 with a small value
    res$padj[res$padj == 0] <- 1e-12
    
    #library(EnhancedVolcano)
    # Assuming res is already sorted and processed
    png("Mac.W1_vs_Mac.WT19606.png", width=1200, height=1200)
    #max.overlaps = 10
    EnhancedVolcano(res,
                    lab = rownames(res),
                    x = 'log2FoldChange',
                    y = 'padj',
                    pCutoff = 1e-2,
                    FCcutoff = 2,
                    title = '',
                    subtitleLabSize = 18,
                    pointSize = 3.0,
                    labSize = 5.0,
                    colAlpha = 1,
                    legendIconSize = 4.0,
                    drawConnectors = TRUE,
                    widthConnectors = 0.5,
                    colConnectors = 'black',
                    subtitle = expression("Mac.W1 versus Mac.WT19606"))
    dev.off()
    
    # ---- Mac.Y1_vs_Mac.WT19606 ----
    res <- read.csv("Mac.Y1_vs_Mac.WT19606-all.csv")
    # Replace empty GeneName with modified GeneID
    res$GeneName <- ifelse(
      res$GeneName == "" | is.na(res$GeneName),
      gsub("gene-", "", res$GeneID),
      res$GeneName
    )
    duplicated_genes <- res[duplicated(res$GeneName), "GeneName"]
    
    res <- res %>%
      group_by(GeneName) %>%
      slice_min(padj, with_ties = FALSE) %>%
      ungroup()
    res <- as.data.frame(res)
    # Sort res first by padj (ascending) and then by log2FoldChange (descending)
    res <- res[order(res$padj, -res$log2FoldChange), ]
    
    # Assuming res is your dataframe and already processed
    # Filter up-regulated genes: log2FoldChange > 2 and padj < 1e-2
    up_regulated <- res[res$log2FoldChange > 2 & res$padj < 1e-2, ]
    # Filter down-regulated genes: log2FoldChange < -2 and padj < 1e-2
    down_regulated <- res[res$log2FoldChange < -2 & res$padj < 1e-2, ]
    # Create a new workbook
    wb <- createWorkbook()
    # Add the complete dataset as the first sheet
    addWorksheet(wb, "Complete_Data")
    writeData(wb, "Complete_Data", res)
    # Add the up-regulated genes as the second sheet
    addWorksheet(wb, "Up_Regulated")
    writeData(wb, "Up_Regulated", up_regulated)
    # Add the down-regulated genes as the third sheet
    addWorksheet(wb, "Down_Regulated")
    writeData(wb, "Down_Regulated", down_regulated)
    # Save the workbook to a file
    saveWorkbook(wb, "Gene_Expression_Mac.Y1_vs_Mac.WT19606.xlsx", overwrite = TRUE)
    
    # Set the 'GeneName' column as row.names
    rownames(res) <- res$GeneName
    # Drop the 'GeneName' column since it's now the row names
    res$GeneName <- NULL
    head(res)
    
    ## Ensure the data frame matches the expected format
    ## For example, it should have columns: log2FoldChange, padj, etc.
    #res <- as.data.frame(res)
    ## Remove rows with NA in log2FoldChange (if needed)
    #res <- res[!is.na(res$log2FoldChange),]
    
    # Replace padj = 0 with a small value
    res$padj[res$padj == 0] <- 1e-12
    
    #library(EnhancedVolcano)
    # Assuming res is already sorted and processed
    png("Mac.Y1_vs_Mac.WT19606.png", width=1200, height=1200)
    #max.overlaps = 10
    EnhancedVolcano(res,
                    lab = rownames(res),
                    x = 'log2FoldChange',
                    y = 'padj',
                    pCutoff = 1e-2,
                    FCcutoff = 2,
                    title = '',
                    subtitleLabSize = 18,
                    pointSize = 3.0,
                    labSize = 5.0,
                    colAlpha = 1,
                    legendIconSize = 4.0,
                    drawConnectors = TRUE,
                    widthConnectors = 0.5,
                    colConnectors = 'black',
                    subtitle = expression("Mac.Y1 versus Mac.WT19606"))
    dev.off()
    
    #TODO: annotate the Gene_Expression_xxx_vs_yyy.xlsx
    
  10. Clustering the genes and draw heatmap

    #http://xgenes.com/article/article-content/150/draw-venn-diagrams-using-matplotlib/
    #http://xgenes.com/article/article-content/276/go-terms-for-s-epidermidis/
    
    # save the Up-regulated and Down-regulated genes into -up.id and -down.id
    for i in Mac_vs_LB LB.AB_vs_LB.WT19606 LB.IJ_vs_LB.WT19606 LB.W1_vs_LB.WT19606 LB.Y1_vs_LB.WT19606 Mac.AB_vs_Mac.WT19606 Mac.IJ_vs_Mac.WT19606 Mac.W1_vs_Mac.WT19606 Mac.Y1_vs_Mac.WT19606; do
      echo "cut -d',' -f1-1 ${i}-up.txt > ${i}-up.id";
      echo "cut -d',' -f1-1 ${i}-down.txt > ${i}-down.id";
    done
    #5 LB.AB_vs_LB.WT19606-down.id
    #20 LB.AB_vs_LB.WT19606-up.id
    #64 LB.IJ_vs_LB.WT19606-down.id
    #69 LB.IJ_vs_LB.WT19606-up.id
    #23 LB.W1_vs_LB.WT19606-down.id
    #97 LB.W1_vs_LB.WT19606-up.id
    #9 LB.Y1_vs_LB.WT19606-down.id
    #20 LB.Y1_vs_LB.WT19606-up.id
    #20 Mac.AB_vs_Mac.WT19606-down.id
    #29 Mac.AB_vs_Mac.WT19606-up.id
    #65 Mac.IJ_vs_Mac.WT19606-down.id
    #197 Mac.IJ_vs_Mac.WT19606-up.id
    #359 Mac_vs_LB-down.id
    #308 Mac_vs_LB-up.id
    #290 Mac.W1_vs_Mac.WT19606-down.id
    #343 Mac.W1_vs_Mac.WT19606-up.id
    #75 Mac.Y1_vs_Mac.WT19606-down.id
    #0 Mac.Y1_vs_Mac.WT19606.png-down.id
    #0 Mac.Y1_vs_Mac.WT19606.png-up.id
    #68 Mac.Y1_vs_Mac.WT19606-up.id
    #2061 total
    
    cat *.id | sort -u > ids
    #Delete "GeneName"
    #add Gene_Id in the first line, delete the ""  #Note that using GeneID as index, rather than GeneName, since .txt contains only GeneID.
    GOI <- read.csv("ids")$Gene_Id    #1329
    RNASeq.NoCellLine <- assay(rld)
    #install.packages("gplots")
    library("gplots")
    #clustering methods: "ward.D", "ward.D2", "single", "complete", "average" (= UPGMA), "mcquitty" (= WPGMA), "median" (= WPGMC) or "centroid" (= UPGMC).  pearson or spearman
    datamat = RNASeq.NoCellLine[GOI, ]
    #datamat = RNASeq.NoCellLine
    write.csv(as.data.frame(datamat), file ="DEGs_heatmap_expression_data.txt")
    
    constant_rows <- apply(datamat, 1, function(row) var(row) == 0)
    if(any(constant_rows)) {
      cat("Removing", sum(constant_rows), "constant rows.\n")
      datamat <- datamat[!constant_rows, ]
    }
    hr <- hclust(as.dist(1-cor(t(datamat), method="pearson")), method="complete")
    hc <- hclust(as.dist(1-cor(datamat, method="spearman")), method="complete")
    mycl = cutree(hr, h=max(hr$height)/1.15)
    mycol = c("YELLOW", "BLUE", "ORANGE", "MAGENTA", "CYAN", "RED", "GREEN", "MAROON", "LIGHTBLUE", "PINK", "MAGENTA", "LIGHTCYAN", "LIGHTRED", "LIGHTGREEN");
    mycol = mycol[as.vector(mycl)]
    #png("DEGs_heatmap.png", width=900, height=800)
    #cex.lab=10, labRow="",
    png("DEGs_heatmap.png", width=1200, height=1000)
    heatmap.2(as.matrix(datamat),Rowv=as.dendrogram(hr),Colv = NA, dendrogram = 'row',labRow="",
                scale='row',trace='none',col=bluered(75), cexCol=1.8,
                RowSideColors = mycol, margins=c(10,2), cexRow=1.5, srtCol=30, lhei = c(1, 8), lwid=c(2, 8))  #rownames(datamat)
    #heatmap.2(datamat, Rowv=as.dendrogram(hr), col=bluered(75), scale="row", RowSideColors=mycol, trace="none", margin=c(5,5), sepwidth=c(0,0), dendrogram = 'row', Colv = 'false', density.info='none', labRow="", srtCol=30, lhei=c(0.1,2))
    dev.off()
    #### cluster members #####
    write.csv(names(subset(mycl, mycl == '1')),file='cluster1_YELLOW.txt')
    write.csv(names(subset(mycl, mycl == '2')),file='cluster2_DARKBLUE.txt')
    write.csv(names(subset(mycl, mycl == '3')),file='cluster3_DARKORANGE.txt')
    write.csv(names(subset(mycl, mycl == '4')),file='cluster4_DARKMAGENTA.txt')
    write.csv(names(subset(mycl, mycl == '5')),file='cluster5_DARKCYAN.txt')
    #~/Tools/csv2xls-0.4/csv_to_xls.py cluster*.txt -d',' -o DEGs_heatmap_cluster_members.xls
    #~/Tools/csv2xls-0.4/csv_to_xls.py DEGs_heatmap_expression_data.txt -d',' -o DEGs_heatmap_expression_data.xls;
    
    #### (NOT_WORKING) cluster members (adding annotations, note that it does not work for the bacteria, since it is not model-speices and we cannot use mart=ensembl) #####
    subset_1<-names(subset(mycl, mycl == '1'))
    data <- as.data.frame(datamat[rownames(datamat) %in% subset_1, ])  #2575
    subset_2<-names(subset(mycl, mycl == '2'))
    data <- as.data.frame(datamat[rownames(datamat) %in% subset_2, ])  #1855
    subset_3<-names(subset(mycl, mycl == '3'))
    data <- as.data.frame(datamat[rownames(datamat) %in% subset_3, ])  #217
    subset_4<-names(subset(mycl, mycl == '4'))
    data <- as.data.frame(datamat[rownames(datamat) %in% subset_4, ])  #
    subset_5<-names(subset(mycl, mycl == '5'))
    data <- as.data.frame(datamat[rownames(datamat) %in% subset_5, ])  #
    # Initialize an empty data frame for the annotated data
    annotated_data <- data.frame()
    # Determine total number of genes
    total_genes <- length(rownames(data))
    # Loop through each gene to annotate
    for (i in 1:total_genes) {
        gene <- rownames(data)[i]
        result <- getBM(attributes = c('ensembl_gene_id', 'external_gene_name', 'gene_biotype', 'entrezgene_id', 'chromosome_name', 'start_position', 'end_position', 'strand', 'description'),
                        filters = 'ensembl_gene_id',
                        values = gene,
                        mart = ensembl)
        # If multiple rows are returned, take the first one
        if (nrow(result) > 1) {
            result <- result[1, ]
        }
        # Check if the result is empty
        if (nrow(result) == 0) {
            result <- data.frame(ensembl_gene_id = gene,
                                external_gene_name = NA,
                                gene_biotype = NA,
                                entrezgene_id = NA,
                                chromosome_name = NA,
                                start_position = NA,
                                end_position = NA,
                                strand = NA,
                                description = NA)
        }
        # Transpose expression values
        expression_values <- t(data.frame(t(data[gene, ])))
        colnames(expression_values) <- colnames(data)
        # Combine gene information and expression data
        combined_result <- cbind(result, expression_values)
        # Append to the final dataframe
        annotated_data <- rbind(annotated_data, combined_result)
        # Print progress every 100 genes
        if (i %% 100 == 0) {
            cat(sprintf("Processed gene %d out of %d\n", i, total_genes))
        }
    }
    # Save the annotated data to a new CSV file
    write.csv(annotated_data, "cluster1_YELLOW.csv", row.names=FALSE)
    write.csv(annotated_data, "cluster2_DARKBLUE.csv", row.names=FALSE)
    write.csv(annotated_data, "cluster3_DARKORANGE.csv", row.names=FALSE)
    write.csv(annotated_data, "cluster4_DARKMAGENTA.csv", row.names=FALSE)
    write.csv(annotated_data, "cluster5_DARKCYAN.csv", row.names=FALSE)
    #~/Tools/csv2xls-0.4/csv_to_xls.py cluster*.csv -d',' -o DEGs_heatmap_clusters.xls
    

KEGG and GO annotations in non-model organisms

https://www.biobam.com/functional-analysis/

Blast2GO_workflow

  1. Assign KEGG and GO Terms (see diagram above)

    Since your organism is non-model, standard R databases (org.Hs.eg.db, etc.) won’t work. You’ll need to manually retrieve KEGG and GO annotations.

    Option 1 (KEGG Terms): EggNog based on orthology and phylogenies

    EggNOG-mapper assigns both KEGG Orthology (KO) IDs and GO terms.
    
    Install EggNOG-mapper:
    
        mamba create -n eggnog_env python=3.8 eggnog-mapper -c conda-forge -c bioconda  #eggnog-mapper_2.1.12
        mamba activate eggnog_env
    
    Run annotation:
    
        #diamond makedb --in eggnog6.prots.faa -d eggnog_proteins.dmnd
        mkdir /home/jhuang/mambaforge/envs/eggnog_env/lib/python3.8/site-packages/data/
        download_eggnog_data.py --dbname eggnog.db -y --data_dir /home/jhuang/mambaforge/envs/eggnog_env/lib/python3.8/site-packages/data/
        #NOT_WORKING: emapper.py -i CP059040_gene.fasta -o eggnog_dmnd_out --cpu 60 -m diamond[hmmer,mmseqs] --dmnd_db /home/jhuang/REFs/eggnog_data/data/eggnog_proteins.dmnd
        python ~/Scripts/update_fasta_header.py CP059040_protein_.fasta CP059040_protein.fasta
        emapper.py -i CP059040_protein.fasta -o eggnog_out --cpu 60 --resume
        #----> result annotations.tsv: Contains KEGG, GO, and other functional annotations.
        #---->  470.IX87_14445:
            * 470 likely refers to the organism or strain (e.g., Acinetobacter baumannii ATCC 19606 or another related strain).
            * IX87_14445 would refer to a specific gene or protein within that genome.
    
    Extract KEGG KO IDs from annotations.emapper.annotations.
    

    Option 2 (GO Terms from 'Blast2GO 5 Basic', saved in blast2go_annot.annot): Using Blast/Diamond + Blast2GO_GUI based on sequence alignment + GO mapping

    • 'Load protein sequences' (Tags: NONE, generated columns: Nr, SeqName) -->
    • Buttons 'blast' (Tags: BLASTED, generated columns: Description, Length, #Hits, e-Value, sim mean),
    • Button 'mapping' (Tags: MAPPED, generated columns: #GO, GO IDs, GO Names), "Mapping finished - Please proceed now to annotation."
    • Button 'annot' (Tags: ANNOTATED, generated columns: Enzyme Codes, Enzyme Names), "Annotation finished." * Used parameter 'Annotation CutOff': The Blast2GO Annotation Rule seeks to find the most specific GO annotations with a certain level of reliability. An annotation score is calculated for each candidate GO which is composed by the sequence similarity of the Blast Hit, the evidence code of the source GO and the position of the particular GO in the Gene Ontology hierarchy. This annotation score cutoff select the most specific GO term for a given GO branch which lies above this value. * Used parameter 'GO Weight' is a value which is added to Annotation Score of a more general/abstract Gene Ontology term for each of its more specific, original source GO terms. In this case, more general GO terms which summarise many original source terms (those ones directly associated to the Blast Hits) will have a higher Annotation Score.

    or blast2go_cli_v1.5.1 (NOT_USED)

        #https://help.biobam.com/space/BCD/2250407989/Installation
        #see ~/Scripts/blast2go_pipeline.sh
    

    Option 3 (GO Terms from 'Blast2GO 5 Basic', saved in blast2go_annot.annot2): Interpro based protein families / domains --> Button interpro * Button 'interpro' (Tags: INTERPRO, generated columns: InterPro IDs, InterPro GO IDs, InterPro GO Names) --> "InterProScan Finished - You can now merge the obtained GO Annotations."

    MERGE the results of InterPro GO IDs (Option 3) to GO IDs (Option 2) and generate final GO IDs * Button 'interpro'/'Merge InterProScan GOs to Annotation' --> "Merge (add and validate) all GO terms retrieved via InterProScan to the already existing GO annotation." --> "Finished merging GO terms from InterPro with annotations. Maybe you want to run ANNEX (Annotation Augmentation)." #* Button 'annot'/'ANNEX' --> "ANNEX finished. Maybe you want to do the next step: Enzyme Code Mapping."

    #-- before merging (blast2go_annot.annot) --
    #H0N29_18790     GO:0004842      ankyrin repeat domain-containing protein
    #H0N29_18790     GO:0085020
    #-- after merging (blast2go_annot.annot2) -->
    #H0N29_18790     GO:0031436      ankyrin repeat domain-containing protein
    #H0N29_18790     GO:0070531
    #H0N29_18790     GO:0004842
    #H0N29_18790     GO:0005515
    #H0N29_18790     GO:0085020
    

    Option 4 (NOT_USED): RFAM for non-colding RNA

    Option 5 (NOT_USED): PSORTb for subcellular localizations

    Option 6 (NOT_USED): KAAS (KEGG Automatic Annotation Server)

    • Go to KAAS
    • Upload your FASTA file.
    • Select an appropriate gene set.
    • Download the KO assignments.
  2. Find the Closest KEGG Organism Code (NOT_USED)

    Since your species isn't directly in KEGG, use a closely related organism.

    • Check available KEGG organisms:
      library(clusterProfiler)
      library(KEGGREST)
      
      kegg_organisms <- keggList("organism")
      
      Pick the closest relative (e.g., zebrafish "dre" for fish, Arabidopsis "ath" for plants).
      
      # Search for Acinetobacter in the list
      grep("Acinetobacter", kegg_organisms, ignore.case = TRUE, value = TRUE)
      # Gammaproteobacteria
      #Extract KO IDs from the eggnog results for  "Acinetobacter baumannii strain ATCC 19606"
      
  3. Find the Closest KEGG Organism for a Non-Model Species

    If your organism is not in KEGG, search for the closest relative:

        grep("fish", kegg_organisms, ignore.case = TRUE, value = TRUE)  # Example search
    

    For KEGG pathway enrichment in non-model species, use "ko" instead of a species code (the code has been intergrated in the point 4):

        kegg_enrich <- enrichKEGG(gene = gene_list, organism = "ko")  # "ko" = KEGG Orthology
    
  4. Perform KEGG and GO Enrichment in R (under dir ~/DATA/ata_Tam_RNAseq_2025_LB_vs_Mac_ATCC19606/results/star_salmon/degenes)

        #BiocManager::install("GO.db")
        #BiocManager::install("AnnotationDbi")
    
        # Load required libraries
        library(openxlsx)  # For Excel file handling
        library(dplyr)     # For data manipulation
        library(tidyr)
        library(stringr)
        library(clusterProfiler)  # For KEGG and GO enrichment analysis
        #library(org.Hs.eg.db)  # Replace with appropriate organism database
        library(GO.db)
        library(AnnotationDbi)
    
        setwd("~/DATA/Data_Tam_RNAseq_2025_LB_vs_Mac_ATCC19606/results/star_salmon/degenes")
        # PREPARING go_terms and ec_terms: annot_* file: cut -f1-2 -d$'\t' blast2go_annot.annot2 > blast2go_annot.annot2_
        # Step 1: Load the blast2go annotation file with a check for missing columns
        annot_df <- read.table("/home/jhuang/b2gWorkspace_Tam_RNAseq_2024/blast2go_annot.annot2_",
                            header = FALSE, sep = "\t", stringsAsFactors = FALSE, fill = TRUE)
    
        # If the structure is inconsistent, we can make sure there are exactly 3 columns:
        colnames(annot_df) <- c("GeneID", "Term")
        # Step 2: Filter and aggregate GO and EC terms as before
        go_terms <- annot_df %>%
        filter(grepl("^GO:", Term)) %>%
        group_by(GeneID) %>%
        summarize(GOs = paste(Term, collapse = ","), .groups = "drop")
        ec_terms <- annot_df %>%
        filter(grepl("^EC:", Term)) %>%
        group_by(GeneID) %>%
        summarize(EC = paste(Term, collapse = ","), .groups = "drop")
    
        # Load the results
        #res <- read.csv("Mac_vs_LB-all.csv")     #up307, down358
        #res <- read.csv("LB.AB_vs_LB.WT19606-all.csv")     #up307, down358
        #res <- read.csv("LB.IJ_vs_LB.WT19606-all.csv")     #up307, down358
        #res <- read.csv("LB.W1_vs_LB.WT19606-all.csv")     #up307, down358
        #res <- read.csv("LB.Y1_vs_LB.WT19606-all.csv")     #up307, down358
        #res <- read.csv("Mac.AB_vs_Mac.WT19606-all.csv")     #up307, down358
        #res <- read.csv("Mac.IJ_vs_Mac.WT19606-all.csv")     #up307, down358
        #res <- read.csv("Mac.W1_vs_Mac.WT19606-all.csv")     #up307, down358
        res <- read.csv("Mac.Y1_vs_Mac.WT19606-all.csv")     #up307, down358
    
        # Replace empty GeneName with modified GeneID
        res$GeneName <- ifelse(
            res$GeneName == "" | is.na(res$GeneName),
            gsub("gene-", "", res$GeneID),
            res$GeneName
        )
    
        # Remove duplicated genes by selecting the gene with the smallest padj
        duplicated_genes <- res[duplicated(res$GeneName), "GeneName"]
    
        res <- res %>%
        group_by(GeneName) %>%
        slice_min(padj, with_ties = FALSE) %>%
        ungroup()
    
        res <- as.data.frame(res)
        # Sort res first by padj (ascending) and then by log2FoldChange (descending)
        res <- res[order(res$padj, -res$log2FoldChange), ]
        # Read eggnog annotations
        eggnog_data <- read.delim("~/DATA/Data_Tam_RNAseq_2024_AUM_MHB_Urine_ATCC19606/eggnog_out.emapper.annotations.txt", header = TRUE, sep = "\t")
        # Remove the "gene-" prefix from GeneID in res to match eggnog 'query' format
        res$GeneID <- gsub("gene-", "", res$GeneID)
        # Merge eggnog data with res based on GeneID
        res <- res %>% left_join(eggnog_data, by = c("GeneID" = "query"))
    
        # Merge with the res dataframe
        # Perform the left joins and rename columns
        res_updated <- res %>%
        left_join(go_terms, by = "GeneID") %>%
        left_join(ec_terms, by = "GeneID") %>% dplyr::select(-EC.x, -GOs.x) %>% dplyr::rename(EC = EC.y, GOs = GOs.y)
    
        # Filter up-regulated genes
        up_regulated <- res_updated[res_updated$log2FoldChange > 2 & res_updated$padj < 0.01, ]
        # Filter down-regulated genes
        down_regulated <- res_updated[res_updated$log2FoldChange < -2 & res_updated$padj < 0.01, ]
    
        # Create a new workbook
        wb <- createWorkbook()
        # Add the complete dataset as the first sheet (with annotations)
        addWorksheet(wb, "Complete_Data")
        writeData(wb, "Complete_Data", res_updated)
        # Add the up-regulated genes as the second sheet (with annotations)
        addWorksheet(wb, "Up_Regulated")
        writeData(wb, "Up_Regulated", up_regulated)
        # Add the down-regulated genes as the third sheet (with annotations)
        addWorksheet(wb, "Down_Regulated")
        writeData(wb, "Down_Regulated", down_regulated)
        # Save the workbook to a file
        saveWorkbook(wb, "Gene_Expression_with_Annotations_Urine_vs_MHB.xlsx", overwrite = TRUE)
    
        # Set GeneName as row names after the join
        rownames(res_updated) <- res_updated$GeneName
        res_updated <- res_updated %>% dplyr::select(-GeneName)
        ## Set the 'GeneName' column as row.names
        #rownames(res_updated) <- res_updated$GeneName
        ## Drop the 'GeneName' column since it's now the row names
        #res_updated$GeneName <- NULL
        # -- BREAK_1 --
    
        # ---- Perform KEGG enrichment analysis (up_regulated) ----
        gene_list_kegg_up <- up_regulated$KEGG_ko
        gene_list_kegg_up <- gsub("ko:", "", gene_list_kegg_up)
        kegg_enrichment_up <- enrichKEGG(gene = gene_list_kegg_up, organism = 'ko')
        # -- convert the GeneID (Kxxxxxx) to the true GeneID --
        # Step 0: Create KEGG to GeneID mapping
        kegg_to_geneid_up <- up_regulated %>%
        dplyr::select(KEGG_ko, GeneID) %>%
        filter(!is.na(KEGG_ko)) %>%  # Remove missing KEGG KO entries
        mutate(KEGG_ko = str_remove(KEGG_ko, "ko:"))  # Remove 'ko:' prefix if present
        # Step 1: Clean KEGG_ko values (separate multiple KEGG IDs)
        kegg_to_geneid_clean <- kegg_to_geneid_up %>%
        mutate(KEGG_ko = str_remove_all(KEGG_ko, "ko:")) %>%  # Remove 'ko:' prefixes
        separate_rows(KEGG_ko, sep = ",") %>%  # Ensure each KEGG ID is on its own row
        filter(KEGG_ko != "-") %>%  # Remove invalid KEGG IDs ("-")
        distinct()  # Remove any duplicate mappings
        # Step 2.1: Expand geneID column in kegg_enrichment_up
        expanded_kegg <- kegg_enrichment_up %>%
        as.data.frame() %>%
        separate_rows(geneID, sep = "/") %>%  # Split multiple KEGG IDs (Kxxxxx)
        left_join(kegg_to_geneid_clean, by = c("geneID" = "KEGG_ko"), relationship = "many-to-many") %>%  # Explicitly handle many-to-many
        distinct() %>%  # Remove duplicate matches
        group_by(ID) %>%
        summarise(across(everything(), ~ paste(unique(na.omit(.)), collapse = "/")), .groups = "drop")  # Re-collapse results
        #dplyr::glimpse(expanded_kegg)
        # Step 3.1: Replace geneID column in the original dataframe
        kegg_enrichment_up_df <- as.data.frame(kegg_enrichment_up)
        # Remove old geneID column and merge new one
        kegg_enrichment_up_df <- kegg_enrichment_up_df %>%
        dplyr::select(-geneID) %>%  # Remove old geneID column
        left_join(expanded_kegg %>% dplyr::select(ID, GeneID), by = "ID") %>%  # Merge new GeneID column
        dplyr::rename(geneID = GeneID)  # Rename column back to geneID
    
        # ---- Perform KEGG enrichment analysis (down_regulated) ----
        # Step 1: Extract KEGG KO terms from down-regulated genes
        gene_list_kegg_down <- down_regulated$KEGG_ko
        gene_list_kegg_down <- gsub("ko:", "", gene_list_kegg_down)
        # Step 2: Perform KEGG enrichment analysis
        kegg_enrichment_down <- enrichKEGG(gene = gene_list_kegg_down, organism = 'ko')
        # --- Convert KEGG gene IDs (Kxxxxxx) to actual GeneIDs ---
        # Step 3: Create KEGG to GeneID mapping from down_regulated dataset
        kegg_to_geneid_down <- down_regulated %>%
        dplyr::select(KEGG_ko, GeneID) %>%
        filter(!is.na(KEGG_ko)) %>%  # Remove missing KEGG KO entries
        mutate(KEGG_ko = str_remove(KEGG_ko, "ko:"))  # Remove 'ko:' prefix if present
        # -- BREAK_2 --
    
        # Step 4: Clean KEGG_ko values (handle multiple KEGG IDs)
        kegg_to_geneid_down_clean <- kegg_to_geneid_down %>%
        mutate(KEGG_ko = str_remove_all(KEGG_ko, "ko:")) %>%  # Remove 'ko:' prefixes
        separate_rows(KEGG_ko, sep = ",") %>%  # Ensure each KEGG ID is on its own row
        filter(KEGG_ko != "-") %>%  # Remove invalid KEGG IDs ("-")
        distinct()  # Remove duplicate mappings
        # Step 5: Expand geneID column in kegg_enrichment_down
        expanded_kegg_down <- kegg_enrichment_down %>%
        as.data.frame() %>%
        separate_rows(geneID, sep = "/") %>%  # Split multiple KEGG IDs (Kxxxxx)
        left_join(kegg_to_geneid_down_clean, by = c("geneID" = "KEGG_ko"), relationship = "many-to-many") %>%  # Handle many-to-many mappings
        distinct() %>%  # Remove duplicate matches
        group_by(ID) %>%
        summarise(across(everything(), ~ paste(unique(na.omit(.)), collapse = "/")), .groups = "drop")  # Re-collapse results
        # Step 6: Replace geneID column in the original kegg_enrichment_down dataframe
        kegg_enrichment_down_df <- as.data.frame(kegg_enrichment_down) %>%
        dplyr::select(-geneID) %>%  # Remove old geneID column
        left_join(expanded_kegg_down %>% dplyr::select(ID, GeneID), by = "ID") %>%  # Merge new GeneID column
        dplyr::rename(geneID = GeneID)  # Rename column back to geneID
        # View the updated dataframe
        head(kegg_enrichment_down_df)
    
        # Create a new workbook
        wb <- createWorkbook()
        # Save enrichment results to the workbook
        addWorksheet(wb, "KEGG_Enrichment_Up")
        writeData(wb, "KEGG_Enrichment_Up", as.data.frame(kegg_enrichment_up_df))
        # Save enrichment results to the workbook
        addWorksheet(wb, "KEGG_Enrichment_Down")
        writeData(wb, "KEGG_Enrichment_Down", as.data.frame(kegg_enrichment_down_df))
    
        # Define gene list (up-regulated genes)
        gene_list_go_up <- up_regulated$GeneID  # Extract the 149 up-regulated genes
        gene_list_go_down <- down_regulated$GeneID  # Extract the 65 down-regulated genes
    
        # Define background gene set (all genes in res)
        background_genes <- res_updated$GeneID  # Extract the 3646 background genes
    
        # Prepare GO annotation data from res
        go_annotation <- res_updated[, c("GOs","GeneID")]  # Extract relevant columns
        go_annotation <- go_annotation %>%
        tidyr::separate_rows(GOs, sep = ",")  # Split multiple GO terms into separate rows
        # -- BREAK_3 --
    
        go_enrichment_up <- enricher(
            gene = gene_list_go_up,                # Up-regulated genes
            TERM2GENE = go_annotation,       # Custom GO annotation
            pvalueCutoff = 0.05,             # Significance threshold
            pAdjustMethod = "BH",
            universe = background_genes      # Define the background gene set
        )
        go_enrichment_up <- as.data.frame(go_enrichment_up)
    
        go_enrichment_down <- enricher(
            gene = gene_list_go_down,                # Up-regulated genes
            TERM2GENE = go_annotation,       # Custom GO annotation
            pvalueCutoff = 0.05,             # Significance threshold
            pAdjustMethod = "BH",
            universe = background_genes      # Define the background gene set
        )
        go_enrichment_down <- as.data.frame(go_enrichment_down)
    
        ## Remove the 'p.adjust' column since no adjusted methods have been applied --> In this version we have used pvalue filtering (see above)!
        #go_enrichment_up <- go_enrichment_up[, !names(go_enrichment_up) %in% "p.adjust"]
        # Update the Description column with the term descriptions
        go_enrichment_up$Description <- sapply(go_enrichment_up$ID, function(go_id) {
        # Using select to get the term description
        term <- tryCatch({
            AnnotationDbi::select(GO.db, keys = go_id, columns = "TERM", keytype = "GOID")
        }, error = function(e) {
            message(paste("Error for GO term:", go_id))  # Print which GO ID caused the error
            return(data.frame(TERM = NA))  # In case of error, return NA
        })
    
        if (nrow(term) > 0) {
            return(term$TERM)
        } else {
            return(NA)  # If no description found, return NA
        }
        })
        ## Print the updated data frame
        #print(go_enrichment_up)
    
        ## Remove the 'p.adjust' column since no adjusted methods have been applied --> In this version we have used pvalue filtering (see above)!
        #go_enrichment_down <- go_enrichment_down[, !names(go_enrichment_down) %in% "p.adjust"]
        # Update the Description column with the term descriptions
        go_enrichment_down$Description <- sapply(go_enrichment_down$ID, function(go_id) {
        # Using select to get the term description
        term <- tryCatch({
            AnnotationDbi::select(GO.db, keys = go_id, columns = "TERM", keytype = "GOID")
        }, error = function(e) {
            message(paste("Error for GO term:", go_id))  # Print which GO ID caused the error
            return(data.frame(TERM = NA))  # In case of error, return NA
        })
    
        if (nrow(term) > 0) {
            return(term$TERM)
        } else {
            return(NA)  # If no description found, return NA
        }
        })
    
        addWorksheet(wb, "GO_Enrichment_Up")
        writeData(wb, "GO_Enrichment_Up", as.data.frame(go_enrichment_up))
    
        addWorksheet(wb, "GO_Enrichment_Down")
        writeData(wb, "GO_Enrichment_Down", as.data.frame(go_enrichment_down))
    
        # Save the workbook with enrichment results
        saveWorkbook(wb, "KEGG_and_GO_Enrichments_Urine_vs_MHB.xlsx", overwrite = TRUE)
    
        #Error for GO term: GO:0006807: replace "GO:0006807 obsolete nitrogen compound metabolic process"
        #obsolete nitrogen compound metabolic process #https://www.ebi.ac.uk/QuickGO/term/GO:0006807
        #TODO: marked the color as yellow if the p.adjusted <= 0.05 in GO_enrichment!
    
        #mv KEGG_and_GO_Enrichments_Urine_vs_MHB.xlsx KEGG_and_GO_Enrichments_Mac_vs_LB.xlsx
        #Mac_vs_LB
        #LB.AB_vs_LB.WT19606
        #LB.IJ_vs_LB.WT19606
        #LB.W1_vs_LB.WT19606
        #LB.Y1_vs_LB.WT19606
        #Mac.AB_vs_Mac.WT19606
        #Mac.IJ_vs_Mac.WT19606
        #Mac.W1_vs_Mac.WT19606
        #Mac.Y1_vs_Mac.WT19606
    
  5. (DEBUG) Draw the Venn diagram to compare the total DEGs across AUM, Urine, and MHB, irrespective of up- or down-regulation.

            library(openxlsx)
    
            # Function to read and clean gene ID files
            read_gene_ids <- function(file_path) {
            # Read the gene IDs from the file
            gene_ids <- readLines(file_path)
    
            # Remove any quotes and trim whitespaces
            gene_ids <- gsub('"', '', gene_ids)  # Remove quotes
            gene_ids <- trimws(gene_ids)  # Trim whitespaces
    
            # Remove empty entries or NAs
            gene_ids <- gene_ids[gene_ids != "" & !is.na(gene_ids)]
    
            return(gene_ids)
            }
    
            # Example list of LB files with both -up.id and -down.id for each condition
            lb_files_up <- c("LB.AB_vs_LB.WT19606-up.id", "LB.IJ_vs_LB.WT19606-up.id",
                            "LB.W1_vs_LB.WT19606-up.id", "LB.Y1_vs_LB.WT19606-up.id")
            lb_files_down <- c("LB.AB_vs_LB.WT19606-down.id", "LB.IJ_vs_LB.WT19606-down.id",
                            "LB.W1_vs_LB.WT19606-down.id", "LB.Y1_vs_LB.WT19606-down.id")
    
            # Combine both up and down files for each condition
            lb_files <- c(lb_files_up, lb_files_down)
    
            # Read gene IDs for each file in LB group
            #lb_degs <- setNames(lapply(lb_files, read_gene_ids), gsub("-(up|down).id", "", lb_files))
            lb_degs <- setNames(lapply(lb_files, read_gene_ids), make.unique(gsub("-(up|down).id", "", lb_files)))
    
            lb_degs_ <- list()
            combined_set <- c(lb_degs[["LB.AB_vs_LB.WT19606"]], lb_degs[["LB.AB_vs_LB.WT19606.1"]])
            #unique_combined_set <- unique(combined_set)
            lb_degs_$AB <- combined_set
            combined_set <- c(lb_degs[["LB.IJ_vs_LB.WT19606"]], lb_degs[["LB.IJ_vs_LB.WT19606.1"]])
            lb_degs_$IJ <- combined_set
            combined_set <- c(lb_degs[["LB.W1_vs_LB.WT19606"]], lb_degs[["LB.W1_vs_LB.WT19606.1"]])
            lb_degs_$W1 <- combined_set
            combined_set <- c(lb_degs[["LB.Y1_vs_LB.WT19606"]], lb_degs[["LB.Y1_vs_LB.WT19606.1"]])
            lb_degs_$Y1 <- combined_set
    
            # Example list of Mac files with both -up.id and -down.id for each condition
            mac_files_up <- c("Mac.AB_vs_Mac.WT19606-up.id", "Mac.IJ_vs_Mac.WT19606-up.id",
                            "Mac.W1_vs_Mac.WT19606-up.id", "Mac.Y1_vs_Mac.WT19606-up.id")
            mac_files_down <- c("Mac.AB_vs_Mac.WT19606-down.id", "Mac.IJ_vs_Mac.WT19606-down.id",
                            "Mac.W1_vs_Mac.WT19606-down.id", "Mac.Y1_vs_Mac.WT19606-down.id")
    
            # Combine both up and down files for each condition in Mac group
            mac_files <- c(mac_files_up, mac_files_down)
    
            # Read gene IDs for each file in Mac group
            mac_degs <- setNames(lapply(mac_files, read_gene_ids), make.unique(gsub("-(up|down).id", "", mac_files)))
    
            mac_degs_ <- list()
            combined_set <- c(mac_degs[["Mac.AB_vs_Mac.WT19606"]], mac_degs[["Mac.AB_vs_Mac.WT19606.1"]])
            mac_degs_$AB <- combined_set
            combined_set <- c(mac_degs[["Mac.IJ_vs_Mac.WT19606"]], mac_degs[["Mac.IJ_vs_Mac.WT19606.1"]])
            mac_degs_$IJ <- combined_set
            combined_set <- c(mac_degs[["Mac.W1_vs_Mac.WT19606"]], mac_degs[["Mac.W1_vs_Mac.WT19606.1"]])
            mac_degs_$W1 <- combined_set
            combined_set <- c(mac_degs[["Mac.Y1_vs_Mac.WT19606"]], mac_degs[["Mac.Y1_vs_Mac.WT19606.1"]])
            mac_degs_$Y1 <- combined_set
    
            # Function to clean sheet names to ensure no sheet name exceeds 31 characters
            truncate_sheet_name <- function(names_list) {
            sapply(names_list, function(name) {
            if (nchar(name) > 31) {
            return(substr(name, 1, 31))  # Truncate sheet name to 31 characters
            }
            return(name)
            })
            }
    
            # Assuming lb_degs_ is already a list of gene sets (LB.AB, LB.IJ, etc.)
    
            # Define intersections between different conditions for LB
            inter_lb_ab_ij <- intersect(lb_degs_$AB, lb_degs_$IJ)
            inter_lb_ab_w1 <- intersect(lb_degs_$AB, lb_degs_$W1)
            inter_lb_ab_y1 <- intersect(lb_degs_$AB, lb_degs_$Y1)
            inter_lb_ij_w1 <- intersect(lb_degs_$IJ, lb_degs_$W1)
            inter_lb_ij_y1 <- intersect(lb_degs_$IJ, lb_degs_$Y1)
            inter_lb_w1_y1 <- intersect(lb_degs_$W1, lb_degs_$Y1)
    
            # Define intersections between three conditions for LB
            inter_lb_ab_ij_w1 <- Reduce(intersect, list(lb_degs_$AB, lb_degs_$IJ, lb_degs_$W1))
            inter_lb_ab_ij_y1 <- Reduce(intersect, list(lb_degs_$AB, lb_degs_$IJ, lb_degs_$Y1))
            inter_lb_ab_w1_y1 <- Reduce(intersect, list(lb_degs_$AB, lb_degs_$W1, lb_degs_$Y1))
            inter_lb_ij_w1_y1 <- Reduce(intersect, list(lb_degs_$IJ, lb_degs_$W1, lb_degs_$Y1))
    
            # Define intersection between all four conditions for LB
            inter_lb_ab_ij_w1_y1 <- Reduce(intersect, list(lb_degs_$AB, lb_degs_$IJ, lb_degs_$W1, lb_degs_$Y1))
    
            # Now remove the intersected genes from each original set for LB
            venn_list_lb <- list()
    
            # For LB.AB, remove genes that are also in other conditions
            venn_list_lb[["LB.AB_only"]] <- setdiff(lb_degs_$AB, union(inter_lb_ab_ij, union(inter_lb_ab_w1, inter_lb_ab_y1)))
    
            # For LB.IJ, remove genes that are also in other conditions
            venn_list_lb[["LB.IJ_only"]] <- setdiff(lb_degs_$IJ, union(inter_lb_ab_ij, union(inter_lb_ij_w1, inter_lb_ij_y1)))
    
            # For LB.W1, remove genes that are also in other conditions
            venn_list_lb[["LB.W1_only"]] <- setdiff(lb_degs_$W1, union(inter_lb_ab_w1, union(inter_lb_ij_w1, inter_lb_ab_w1_y1)))
    
            # For LB.Y1, remove genes that are also in other conditions
            venn_list_lb[["LB.Y1_only"]] <- setdiff(lb_degs_$Y1, union(inter_lb_ab_y1, union(inter_lb_ij_y1, inter_lb_ab_w1_y1)))
    
            # Add the intersections for LB (same as before)
            venn_list_lb[["LB.AB_AND_LB.IJ"]] <- inter_lb_ab_ij
            venn_list_lb[["LB.AB_AND_LB.W1"]] <- inter_lb_ab_w1
            venn_list_lb[["LB.AB_AND_LB.Y1"]] <- inter_lb_ab_y1
            venn_list_lb[["LB.IJ_AND_LB.W1"]] <- inter_lb_ij_w1
            venn_list_lb[["LB.IJ_AND_LB.Y1"]] <- inter_lb_ij_y1
            venn_list_lb[["LB.W1_AND_LB.Y1"]] <- inter_lb_w1_y1
    
            # Define intersections between three conditions for LB
            venn_list_lb[["LB.AB_AND_LB.IJ_AND_LB.W1"]] <- inter_lb_ab_ij_w1
            venn_list_lb[["LB.AB_AND_LB.IJ_AND_LB.Y1"]] <- inter_lb_ab_ij_y1
            venn_list_lb[["LB.AB_AND_LB.W1_AND_LB.Y1"]] <- inter_lb_ab_w1_y1
            venn_list_lb[["LB.IJ_AND_LB.W1_AND_LB.Y1"]] <- inter_lb_ij_w1_y1
    
            # Define intersection between all four conditions for LB
            venn_list_lb[["LB.AB_AND_LB.IJ_AND_LB.W1_AND_LB.Y1"]] <- inter_lb_ab_ij_w1_y1
    
            # Assuming mac_degs_ is already a list of gene sets (Mac.AB, Mac.IJ, etc.)
    
            # Define intersections between different conditions
            inter_mac_ab_ij <- intersect(mac_degs_$AB, mac_degs_$IJ)
            inter_mac_ab_w1 <- intersect(mac_degs_$AB, mac_degs_$W1)
            inter_mac_ab_y1 <- intersect(mac_degs_$AB, mac_degs_$Y1)
            inter_mac_ij_w1 <- intersect(mac_degs_$IJ, mac_degs_$W1)
            inter_mac_ij_y1 <- intersect(mac_degs_$IJ, mac_degs_$Y1)
            inter_mac_w1_y1 <- intersect(mac_degs_$W1, mac_degs_$Y1)
    
            # Define intersections between three conditions
            inter_mac_ab_ij_w1 <- Reduce(intersect, list(mac_degs_$AB, mac_degs_$IJ, mac_degs_$W1))
            inter_mac_ab_ij_y1 <- Reduce(intersect, list(mac_degs_$AB, mac_degs_$IJ, mac_degs_$Y1))
            inter_mac_ab_w1_y1 <- Reduce(intersect, list(mac_degs_$AB, mac_degs_$W1, mac_degs_$Y1))
            inter_mac_ij_w1_y1 <- Reduce(intersect, list(mac_degs_$IJ, mac_degs_$W1, mac_degs_$Y1))
    
            # Define intersection between all four conditions
            inter_mac_ab_ij_w1_y1 <- Reduce(intersect, list(mac_degs_$AB, mac_degs_$IJ, mac_degs_$W1, mac_degs_$Y1))
    
            # Now remove the intersected genes from each original set
            venn_list_mac <- list()
    
            # For Mac.AB, remove genes that are also in other conditions
            venn_list_mac[["Mac.AB_only"]] <- setdiff(mac_degs_$AB, union(inter_mac_ab_ij, union(inter_mac_ab_w1, inter_mac_ab_y1)))
    
            # For Mac.IJ, remove genes that are also in other conditions
            venn_list_mac[["Mac.IJ_only"]] <- setdiff(mac_degs_$IJ, union(inter_mac_ab_ij, union(inter_mac_ij_w1, inter_mac_ij_y1)))
    
            # For Mac.W1, remove genes that are also in other conditions
            venn_list_mac[["Mac.W1_only"]] <- setdiff(mac_degs_$W1, union(inter_mac_ab_w1, union(inter_mac_ij_w1, inter_mac_ab_w1_y1)))
    
            # For Mac.Y1, remove genes that are also in other conditions
            venn_list_mac[["Mac.Y1_only"]] <- setdiff(mac_degs_$Y1, union(inter_mac_ab_y1, union(inter_mac_ij_y1, inter_mac_ab_w1_y1)))
    
            # Add the intersections (same as before)
            venn_list_mac[["Mac.AB_AND_Mac.IJ"]] <- inter_mac_ab_ij
            venn_list_mac[["Mac.AB_AND_Mac.W1"]] <- inter_mac_ab_w1
            venn_list_mac[["Mac.AB_AND_Mac.Y1"]] <- inter_mac_ab_y1
            venn_list_mac[["Mac.IJ_AND_Mac.W1"]] <- inter_mac_ij_w1
            venn_list_mac[["Mac.IJ_AND_Mac.Y1"]] <- inter_mac_ij_y1
            venn_list_mac[["Mac.W1_AND_Mac.Y1"]] <- inter_mac_w1_y1
    
            # Define intersections between three conditions
            venn_list_mac[["Mac.AB_AND_Mac.IJ_AND_Mac.W1"]] <- inter_mac_ab_ij_w1
            venn_list_mac[["Mac.AB_AND_Mac.IJ_AND_Mac.Y1"]] <- inter_mac_ab_ij_y1
            venn_list_mac[["Mac.AB_AND_Mac.W1_AND_Mac.Y1"]] <- inter_mac_ab_w1_y1
            venn_list_mac[["Mac.IJ_AND_Mac.W1_AND_Mac.Y1"]] <- inter_mac_ij_w1_y1
    
            # Define intersection between all four conditions
            venn_list_mac[["Mac.AB_AND_Mac.IJ_AND_Mac.W1_AND_Mac.Y1"]] <- inter_mac_ab_ij_w1_y1
    
            # Save the gene IDs to Excel for further inspection (optional)
            write.xlsx(lb_degs, file = "LB_DEGs.xlsx")
            write.xlsx(mac_degs, file = "Mac_DEGs.xlsx")
    
            # Clean sheet names and write the Venn intersection sets for LB and Mac groups into Excel files
            write.xlsx(venn_list_lb, file = "Venn_LB_Genes_Intersect.xlsx", sheetName = truncate_sheet_name(names(venn_list_lb)), rowNames = FALSE)
            write.xlsx(venn_list_mac, file = "Venn_Mac_Genes_Intersect.xlsx", sheetName = truncate_sheet_name(names(venn_list_mac)), rowNames = FALSE)
    
            # Venn Diagram for LB group
            venn1 <- ggvenn(lb_degs_,
                            fill_color = c("skyblue", "tomato", "gold", "orchid"),
                            stroke_size = 0.4,
                            set_name_size = 5)
            ggsave("Venn_LB_Genes.png", plot = venn1, width = 7, height = 7, dpi = 300)
    
            # Venn Diagram for Mac group
            venn2 <- ggvenn(mac_degs_,
                            fill_color = c("lightgreen", "slateblue", "plum", "orange"),
                            stroke_size = 0.4,
                            set_name_size = 5)
            ggsave("Venn_Mac_Genes.png", plot = venn2, width = 7, height = 7, dpi = 300)
    
            cat("✅ All Venn intersection sets exported to Excel successfully.\n")
    

like unlike

点赞本文的读者

还没有人对此文章表态


本文有评论

没有评论

看文章,发评论,不要沉默


© 2023 XGenes.com Impressum