huang 0 like s 688 view s
Tags: Methods
conda activate viral3
for sample in CSF_EH_RNA_S1; do
java -jar /home/jhuang/Tools/Trimmomatic-0.36/trimmomatic-0.36.jar PE -threads 16 ./raw_data/${sample}_R1_001.fastq.gz ./raw_data/${sample}_R2_001.fastq.gz trimmed/${sample}_R1.fastq.gz trimmed/${sample}_unpaired_R1.fastq.gz trimmed/${sample}_R2.fastq.gz trimmed/${sample}_unpaired_R2.fastq.gz ILLUMINACLIP:/home/jhuang/Tools/Trimmomatic-0.36/adapters/TruSeq3-PE-2.fa:2:30:10:8:TRUE LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36 AVGQUAL:20;
done
#The header should be 'ON340918'
ref_fa="ON340918.fa";
#coverage plots
for sample in CSF_EH_RNA_S1; do
#bowtie2-build ${ref_fa} ${ref_fa}
#bowtie2 -1 trimmed/${sample}_R1.fastq.gz -2 trimmed/${sample}_R2.fastq.gz -x ${ref_fa}.fasta --fast --threads 16 -S bams/${sample}.sam
#samtools view -h -Sb bams/${sample}.sam > bams/${sample}.bam
bwa index ${ref_fa};
bwa mem -M -t 14 ${ref_fa} trimmed/${sample}_R1.fastq.gz trimmed/${sample}_R2.fastq.gz | samtools view -bS - > bams/${sample}.bam;
bwa mem -M -t 14 ${ref_fa} trimmed/${sample}_R1.fastq.gz trimmed/${sample}_R2.fastq.gz | samtools view -bS -F 256 - > bams/${sample}_uniqmap.bam;
samtools sort bams/${sample}.bam > bams/${sample}_sorted.bam
samtools index bams/${sample}_sorted.bam
samtools depth -d 1000000 bams/${sample}_sorted.bam | gzip > ${sample}.cov.gz
~/Tools/damian_extended/lib_py/vipr_cov_pdf_sample.py -c ${sample}.cov.gz -p ${sample}.pdf
done
AF_VS_COV_PDF = "#{BASEPATH}/lib_py/vipr_af_vs_cov_pdf_1sample.py"
AF_VS_COV_HTML = "#{BASEPATH}/3rd_party/vipr-tools/src/vipr_af_vs_cov_html.py"
JOINER = "#{BASEPATH}/3rd_party/vipr-tools/src/simple_contig_joiner.py"
FILL_DP_ON_VPHASER = "#{BASEPATH}/lib_py/fill_DP_on_vphaser2.py"
POLISHER = "#{BASEPATH}/3rd_party/vipr-tools/src/polish_viral_ref.sh"
GAPPER = "#{BASEPATH}/3rd_party/vipr-tools/src/vipr_gaps_to_n.py"
#downsample
seqtk sample -s100 CSF_EH_RNA_S1_R1.fastq.gz 1000000 > CSF_EH_RNA_downsampled_R1.fastq.gz
seqtk sample -s100 CSF_EH_RNA_S1_R2.fastq.gz 1000000 > CSF_EH_RNA_downsampled_R2.fastq.gz
~/Tools/damian_extended/3rd_party/vipr-tools/src/polish_viral_ref.sh -1 trimmed/CSF_EH_RNA_downsampled_R1.fastq.gz -2 trimmed/CSF_EH_RNA_downsampled_R2.fastq.gz -r ON340918.fa -o polished.fa -t 8
~/Tools/damian_extended/3rd_party/vipr-tools/src/vipr_gaps_to_n.py -i polished.fa -c CSF_EH_RNA_S1.cov.gz > gapped_contig.fa
~/Tools/csv2xls-0.4/csv_to_xls.py CSF_RNA_on_ON340918.cov -d$'\t' -o CSF_RNA_on_ON340918_coverage.xls
Mapping reads to a reference genome is a common task in bioinformatics analysis. This process involves aligning short reads from a sequencing experiment to a known reference genome, allowing for downstream analysis such as variant calling and differential expression analysis.
There are several tools available for mapping reads to a reference genome, including:
Bowtie/Bowtie2: These are fast and memory-efficient alignment tools that use the Burrows-Wheeler transform (BWT) algorithm to align reads to a reference genome.
BWA: This is another widely used alignment tool that uses the BWT algorithm to align reads to a reference genome.
STAR: This is a tool specifically designed for RNA sequencing data that can align reads to a reference genome and identify splice junctions.
HISAT2: This is another RNA sequencing alignment tool that uses a hierarchical indexing strategy to align reads to a reference genome.
To map reads to a reference genome using any of these tools, you will typically need the following inputs:
点赞本文的读者
还没有人对此文章表态
没有评论
AnnotationData Packages for Agilent microarrays
File format for single channel analysis of Agilent microarray data with Limma?
© 2023 XGenes.com Impressum