gene_x 0 like s 295 view s
Tags: research, technique
https://grk2771.de/phd-students-2/
Project 2 Summary (Interplay between Yersinia enterocolitica and the autophagosomal/lysosomal system in epithelial host cells and organoids, 耶尔森菌与上皮宿主细胞和类器官中的自噬体/溶酶体系统的相互作用)
We expect the results of this work to be of general importance for cell and human infection biology.
Yersinia enterocolitica 通过细胞侵入策略定殖宿主肠组织。
Project 1 Summary
Methods to be applied include: sCRISPR/Cas mediated mutagenesis and gene editing of Yersinia; affinity purification and mass spectrometric analysis of host-pathogen protein complexes; in vitro protein-protein interaction; super-resolution fluorescence microscopy of bacterial and host proteins in fixed and living macrophages.
耶尔森菌的T3SS/注射体是一种分子机器,可以将效应蛋白注入宿主细胞,以支持细菌的感染策略。
Project 7 Summary
Furthermore, the project takes advantage of X-ray crystallography to characterize inhibitor/target interaction.
人类多瘤病毒(Polyomaviruses,简称PyV)具有高度流行性,并在健康的免疫健全宿主中建立终生的无症状持续感染。
Project 4 Summary
The Role of CEP55 in exosomal section by ovarian cancer cells
SILAC labelling of macrophages will be combined with chemical crosslinking, (co-) immunoprecipitation and proximity labelling assays to identify ligands on the Borrelia surface involved in recruiting the molecular machinery driving phagosome/tunnel closure and phagosome compaction. Lattice light sheet microscopy and focused ion beam microscopy will be used to analyse membrane flow at phagosomes and tunnels.
LAMP1(溶酶体相关膜蛋白1)是一个在溶酶体功能和维护中起关键作用的蛋白质。以下是关于LAMP1的详细介绍:
功能:
溶酶体膜蛋白: LAMP1主要位于溶酶体的膜上,溶酶体是细胞内负责降解和回收各种生物分子的细胞器。
细胞内运输: LAMP1帮助溶酶体与其他细胞室的融合和运输,确保大分子的正确处理。
内吞作用和自噬: LAMP1参与内吞作用(细胞摄取外部物质)和自噬(细胞内部成分的降解)。
细胞表面标记物: LAMP1也可以作为细胞研究中的溶酶体标记物,用于追踪溶酶体的活动。
结构:
糖蛋白: LAMP1是糖蛋白,即它具有附加的糖分子,这些糖链对其功能和稳定性至关重要。
跨膜结构: 它通过跨膜域穿越溶酶体膜,细胞质部分朝向溶酶体内部。
临床相关性:
溶酶体储存病: LAMP1的突变或功能失调可能与溶酶体储存病有关,这种病症中溶酶体不能正常降解物质。
癌症研究: LAMP1的表达水平有时可以作为癌症研究中的标记,因为其水平在不同类型的癌症中可能有所不同。
总的来说,LAMP1对溶酶体功能和细胞稳态至关重要。
博氏疏螺旋体是引起莱姆病的病原体,这是一种影响皮肤、神经系统和关节的多系统疾病。
宿主细胞对疏螺旋体的摄取和细胞内处理过程包括几个步骤:
i) 通过formin调控的丝状伪足将高度运动的疏螺旋体固定,
v) 在成熟的吞噬溶酶体中降解(参见图示)。
我们还发现了在疏螺旋体摄取和处理过程中发挥特定作用的脂类,如PI(3)P和磷脂酰丝氨酸。
该项目将:
a) 分析含疏螺旋体的吞噬体和隧道的蛋白质组和脂质组,
c) 识别特异性调节螺旋体压缩的因子,相对于没有显著吞噬体压缩的细菌(如葡萄球菌和链球菌),或者采取不同细胞内生存或持久性策略的细菌(如耶尔森菌、军团菌或沙门氏菌)。
将结合巨噬细胞的SILAC标记与化学交联、(共同)免疫沉淀和邻近标记实验,以识别参与招募驱动吞噬体/隧道关闭和吞噬体压缩的分子机器的疏螺旋体表面配体。晶格光片显微镜和聚焦离子束显微镜将用于分析吞噬体和隧道的膜流动。
疏螺旋体摄取和细胞内处理的分子机制:
疏螺旋体在宿主细胞内的摄取和处理涉及哪些具体的分子通路?特别是formin、Daam1和Arp2/3复合物在这一过程中具体如何调控?
在疏螺旋体摄取和处理过程中,PI(3)P和磷脂酰丝氨酸分别发挥了什么具体作用?
膜隧道结构的功能和形成机制:
新发现的膜隧道结构是如何形成的?其形成机制与疏螺旋体的高运动性之间有什么关系?
这些膜隧道在疏螺旋体与宿主细胞的相互作用中起到了什么具体作用?
ER接触位点在吞噬体成熟中的作用:
ER接触位点(STIM1阳性)的形成机制是什么?它们在含疏螺旋体吞噬体的成熟过程中起到了什么具体作用?
吞噬体Ca2+内流在疏螺旋体吞噬体成熟中的具体作用是什么?它如何调节吞噬体的功能和疏螺旋体的降解过程?
疏螺旋体特异性吞噬体调节因子:
哪些特异性调节因子参与了疏螺旋体吞噬体的压缩和成熟?这些因子与其他细菌(如葡萄球菌、链球菌、耶尔森菌、军团菌和沙门氏菌)所需的因子有何不同?
在Borrelia感染过程中,哪些特异性调节因子和机制能够调节吞噬体的压缩和成熟,从而影响螺旋体的细胞内存活?
宿主细胞对疏螺旋体的免疫应答机制:
巨噬细胞对疏螺旋体的内化和处理过程中,宿主细胞的免疫应答是如何被调控的?
针对疏螺旋体的高运动性,宿主细胞有哪些特异性免疫防御机制?
药物靶点及治疗策略:
通过对疏螺旋体吞噬体及隧道结构的深入研究,是否可以发现新的药物靶点?
能否基于疏螺旋体特异性调节因子的研究,开发出针对莱姆病的新的治疗策略?
Molecular Mechanisms of Borrelia burgdorferi Uptake and Intracellular Processing:
What are the specific molecular pathways involved in the uptake and intracellular processing of Borrelia burgdorferi within host cells? Specifically, how do formin, Daam1, and the Arp2/3 complex regulate this process?
What specific roles do PI(3)P and phosphatidylserine play during the uptake and processing of Borrelia burgdorferi?
Function and Formation Mechanisms of Membrane Tunnels:
How are the newly discovered membrane tunnels formed, and what is the relationship between their formation and the high motility of Borrelia burgdorferi?
What specific roles do these membrane tunnels play in the interaction between Borrelia burgdorferi and host cells?
Roles of ER Contact Sites in Phagosome Maturation:
What are the mechanisms of formation for ER contact sites (STIM1-positive) and their specific roles in the maturation of Borrelia-containing phagosomes?
What is the specific role of phagosomal Ca2+ influx in the maturation of Borrelia phagosomes, and how does it regulate the function of phagosomes and the degradation process of Borrelia burgdorferi?
Borrelia-Specific Regulators of Phagosome Compaction and Maturation:
What specific regulators are involved in the compaction and maturation of Borrelia-containing phagosomes? How do these regulators differ from those involved in the processing of other bacteria such as staphylococci, streptococci, Yersinia, Legionella, and Salmonella?
During Borrelia infection, which specific regulators and mechanisms control phagosome compaction and maturation, thereby affecting the intracellular survival of Borrelia burgdorferi?
Immune Response Mechanisms of Host Cells to Borrelia burgdorferi:
How is the immune response of host cells regulated during the internalization and processing of Borrelia burgdorferi by macrophages?
What specific immune defense mechanisms do host cells employ in response to the high motility of Borrelia burgdorferi?
Drug Targets and Therapeutic Strategies:
Can in-depth studies of Borrelia-containing phagosomes and membrane tunnels lead to the discovery of new drug targets?
Based on research into Borrelia-specific regulators, is it possible to develop new therapeutic strategies for Lyme disease?
These questions aim to delve deeply into the interaction mechanisms between Borrelia burgdorferi and host cells, potentially leading to the development of new treatment methods and improving the prevention and control of Lyme disease and related conditions.
Mechanisms of Host-Pathogen Interaction:
What are the key steps and molecular mechanisms involved in the uptake and intracellular processing of Borrelia burgdorferi by host cells?
How do specific host cell structures and proteins, such as formins, phospholipids, and ER contact sites, contribute to the handling and degradation of Borrelia burgdorferi?
Dynamics of Intracellular Pathogen Processing:
What roles do newly discovered structures, like membrane tunnels, play in the intracellular journey of Borrelia burgdorferi?
How does the motility of Borrelia burgdorferi influence its interaction with host cell phagosomes and subsequent intracellular processing?
Cellular Defense Mechanisms:
How do host immune cells, particularly macrophages, recognize, internalize, and destroy Borrelia burgdorferi?
What are the cellular responses and defense mechanisms triggered by Borrelia burgdorferi infection?
Phagosome Maturation and Pathogen Survival:
What factors regulate the maturation of Borrelia-containing phagosomes, and how do these processes differ from those involving other pathogens?
How do intracellular pathogens like Borrelia burgdorferi evade or manipulate host cell processes to ensure their survival and replication?
Novel Therapeutic Targets:
What potential drug targets can be identified from the molecular mechanisms involved in the uptake and degradation of Borrelia burgdorferi?
How can understanding the specific interactions between Borrelia burgdorferi and host cells lead to new therapeutic strategies for Lyme disease?
Role of Host Cell Structures in Infection:
What is the significance of endoplasmic reticulum (ER) contact sites in the context of Borrelia burgdorferi infection, and how do they affect phagosome function and maturation?
How do specific lipids and proteins on the host cell surface facilitate or hinder the intracellular processing of Borrelia burgdorferi?
These questions aim to explore the broader aspects of host-pathogen interactions, intracellular processing of pathogens, and potential avenues for therapeutic intervention.
DNA virus: Papalloni-virus, Polyomavirus, Herpes-virus; RNA virus: HIV
点赞本文的读者
还没有人对此文章表态
没有评论
© 2023 XGenes.com Impressum