gene_x 0 like s 364 view s
Tags: python, pipeline
download go terms from Gene Ontology https://geneontology.org/docs/download-ontology/
import obonet
# Load the OBO file
url = 'http://purl.obolibrary.org/obo/go/go-basic.obo'
graph = obonet.read_obo(url)
# Open a file to write to
with open('go_terms.csv', 'w') as f:
f.write("id,name,namespace\n") # Write header
for node_id, data in graph.nodes(data=True):
name = data.get('name', '')
namespace = data.get('namespace', '')
f.write(f"{node_id}\t{name}\t{namespace}\n") # Write data
prepare the blastp output
python3 filter_uniref_by_taxid.py uniref100.fasta uniref100_taxid1282.fasta
makeblastdb -in uniref90_taxid1282.fasta -dbtype prot
makeblastdb -in uniref50_taxid1282.fasta -dbtype prot;
makeblastdb -in uniref100_taxid1282.fasta -dbtype prot;
# -strand both -max_target_seqs 1 -taxidlist taxid_list.txt
blastp -query 1585_CDS.fasta -db /home/jhuang/REFs/uniref100_taxid1282.fasta -out 1585_CDS_on_uniref100.blastp -num_threads 100 -outfmt 6 -evalue 1.0e-30
grep -v "UniRef100_UPI" 1585_CDS_on_uniref100.blastp > 1585_CDS_on_uniref100_.blastp
python3 add_RefSeq-ID.py 1585_genes_annotated_with_GO.csv 1585.csv 1585_genes_annotated_with_GO_RefSeq-ID.csv
python3 add_UniProt-ID.py #Input are 1585_CDS_on_uniref100_.blastp and 1585_genes_annotated_with_GO_RefSeq-ID.csv; Output is 1585_genes_annotated_with_GO_RefSeq-ID_UniProt-ID.csv.
python3 add_Translation.py 1585_genes_annotated_with_GO_RefSeq-ID_UniProt-ID.csv 1585.csv 1585_genes_annotated_with_GO_RefSeq-ID_UniProt-ID_Translation.csv
# check if they are running correctly
cut -f1 -d',' 1585_genes_annotated_with_GO_NCBI-ID.csv > temp1
cut -f1 -d',' 1585_genes_annotated_with_GO_NCBI-ID_UniProt-ID_Translation.csv > temp2
diff temp1 temp2
code of filter_uniref_by_taxid.py
import sys
def filter_uniref50(input_file, output_file):
with open(input_file, 'r') as in_handle:
with open(output_file, 'w') as out_handle:
record_started = False
for line in in_handle:
if line.startswith(">"):
if "TaxID=1282 " in line:
record_started = True
out_handle.write(line)
else:
record_started = False
elif record_started:
out_handle.write(line)
if __name__ == "__main__":
# Check command-line arguments
if len(sys.argv) != 3:
print("Usage: python3 filter_uniref_by_taxid.py <input_file> <output_file>")
sys.exit(1)
# Get input and output file paths from command-line arguments
input_file = sys.argv[1]
output_file = sys.argv[2]
# Filter UniRef50 database based on TaxID=1282
filter_uniref50(input_file, output_file)
print("Filtered UniRef50 database saved to:", output_file)
code of add_RefSeq-ID.py
import pandas as pd
import sys
def main(input_file1, input_file2, output_file):
# Load the first table
table1 = pd.read_csv(input_file1)
# Load the second table
table2 = pd.read_csv(input_file2)
# Merge the tables on SeqName from table1 and Locus Tag from table2
merged_table = pd.merge(table1, table2[['Locus Tag', 'inference']], left_on='SeqName', right_on='Locus Tag', how='left')
# Drop the extra 'Locus Tag' column that is redundant after merge
merged_table.drop(columns=['Locus Tag'], inplace=True)
# Save the merged table to a new CSV file
merged_table.to_csv(output_file, index=False)
if __name__ == "__main__":
if len(sys.argv) != 4:
print("Usage: python script.py <input_file1> <input_file2> <output_file>")
#python3 add_NCBI-ID.py 1585_genes_annotated_with_GO.csv 1585.csv 1585_genes_annotated_with_GO_NCBI-ID.csv
else:
input_file1 = sys.argv[1]
input_file2 = sys.argv[2]
output_file = sys.argv[3]
main(input_file1, input_file2, output_file)
code of add_UniProt-ID.py
import csv
# Read blastp results and create a dictionary mapping CDS IDs to lists of UniRef100 IDs
def read_blastp_results(blastp_file):
cds_to_uniref100 = {}
with open(blastp_file, 'r') as blastp_handle:
blastp_reader = csv.reader(blastp_handle, delimiter='\t')
for row in blastp_reader:
cds_id, uniref100_id = row[0], row[1]
if cds_id not in cds_to_uniref100:
cds_to_uniref100[cds_id] = []
cds_to_uniref100[cds_id].append(uniref100_id)
return cds_to_uniref100
# Add UniRef100 IDs as the last column in the input CSV file
def add_uniref100_column(input_file, output_file, cds_to_uniref100):
with open(input_file, 'r') as input_handle:
with open(output_file, 'w', newline='') as output_handle:
reader = csv.reader(input_handle)
writer = csv.writer(output_handle)
for row in reader:
cds_id = row[0]
if cds_id in cds_to_uniref100:
uniref100_ids = '|'.join(cds_to_uniref100[cds_id])
row.append(uniref100_ids)
else:
row.append("") # If no UniRef100 IDs found, add empty string
writer.writerow(row)
if __name__ == "__main__":
blastp_file = "1585_CDS_on_uniref100_.blastp" # Replace with your blastp results file
input_file = "1585_genes_annotated_with_GO_NCBI-ID.csv"
output_file = "1585_genes_annotated_with_GO_NCBI-ID_UniProt-ID.csv"
# Read blastp results and create dictionary mapping CDS IDs to lists of UniRef100 IDs
cds_to_uniref100 = read_blastp_results(blastp_file)
# Add UniRef100 IDs as the last column in the input CSV file
add_uniref100_column(input_file, output_file, cds_to_uniref100)
print("UniRef100 IDs added to the input CSV file:", output_file)
code of add_Translation.py
import pandas as pd
import sys
def main(input_file1, input_file2, output_file):
# Load the first table
table1 = pd.read_csv(input_file1)
# Load the second table
table2 = pd.read_csv(input_file2)
# Merge the tables on SeqName from table1 and Locus Tag from table2
merged_table = pd.merge(table1, table2[['Locus Tag', 'Translation']], left_on='SeqName', right_on='Locus Tag', how='left')
# Drop the extra 'Locus Tag' column that is redundant after merge
merged_table.drop(columns=['Locus Tag'], inplace=True)
# Save the merged table to a new CSV file
merged_table.to_csv(output_file, index=False)
if __name__ == "__main__":
if len(sys.argv) != 4:
print("Usage: python script.py <input_file1> <input_file2> <output_file>")
#python3 add_NCBI-ID_to_1585-table.py 1585_genes_annotated_with_GO.csv 1585.csv 1585_genes_annotated_with_GO_Translation.csv
else:
input_file1 = sys.argv[1]
input_file2 = sys.argv[2]
output_file = sys.argv[3]
main(input_file1, input_file2, output_file)
点赞本文的读者
还没有人对此文章表态
没有评论
Small RNA sequencing processing in the example of smallRNA_7
RNA-seq skin organoids on GRCh38+chrHsv1 (final)
© 2023 XGenes.com Impressum