GSVA-plot for carotis nanoString data

gene_x 0 like s 633 view s

Tags: plot, R, RNA-seq

Carotis_NanoString

Carotis_NanoString_grid_1

Carotis_NanoString_grid_2

  1. preparing exprs for gsva(exprs, selected_geneSets, method="gsva")

    #Input: Images/*png and (hard-coded) /mnt/Samsung_T5/Data_Susanne_spatialRNA/M666_UKE_Hamburg_box/ dccs/*.dcc, pkcs3/all.zip, and annotation/M666_All_Data_SP.xlsx
    
    library("rmarkdown")
    library("tidyverse")
    library(rmarkdown)
    library("GeomxTools")
    library("GeoMxWorkflows")
    library("NanoStringNCTools")
    setwd("/home/jhuang/DATA/Data_Susanne_Carotis_spatialRNA_PUBLISHING/run_2023_2_GSVA")
    render("run.Rmd", c("html_document"))
    
    #identical(exprs(target_m666Data), assay(target_m666Data, "exprs")): contains the gene expression values that have been both normalized and log-transformed, which are often used for downstream analysis and visualization in many genomic studies.
    #assay(target_m666Data, "log_q"): These are likely log2-transformed values of the quantile-normalized data. Quantile normalization ensures that the distributions of gene expression values across samples are the same, and taking the log2 of these normalized values is a common step in the analysis of high-throughput gene expression data. It's a way to make the data more suitable for downstream statistical analysis and visualization.
    #assay(target_m666Data, "q_norm"): This typically represents the quantile-normalized gene expression values. Quantile normalization adjusts the expression values in each sample so that they have the same distribution. This normalization method helps remove systematic biases and makes the data more comparable across samples.
    # For the following calculation, the GSVA input requires a gene expression matrix 'exprs' where rows are genes and columns are samples. This matrix must be in non-log space.
    exprs <- exprs(target_m666Data)
    #> dim(exprs)
    #[1] 18677    45
    #exprs <- exprs(filtered_or_neg_target_m666Data)
    
  2. preparing selected_geneSets in gsva(exprs, selected_geneSets, method="gsva")

    #Input: Signatures.xls
    
    library(readxl)
    library(gridExtra)
    library(ggplot2)
    library(GSVA)
    
    # Paths to the Excel files
    file_paths <- list("Signatures.xls", "Signatures_additional.xls")
    
    # Get sheet names for each file
    sheet_names_list <- lapply(file_paths, excel_sheets)
    
    # Initialize an empty list to hold gene sets
    geneSets <- list()
    
    # Loop over each file path and its corresponding sheet names
    for (i in 1:length(file_paths)) {
      file_path <- file_paths[[i]]
      sheet_names <- sheet_names_list[[i]]
    
      # Loop over each sheet, extract the ENSEMBL IDs, and add to the list
      for (sheet in sheet_names) {
        # Read the sheet
        data <- read_excel(file_path, sheet = sheet)
    
        # Process the GeneSet names (replacing spaces with underscores, for example)
        gene_set_name <- gsub(" ", "_", unique(data$GeneSet)[1])
    
        # Add ENSEMBL IDs to the list
        geneSets[[gene_set_name]] <- unique(as.character(data$geneSymbol))
      }
    }
    
    # Print the result to check
    summary(geneSets)
    
    #desired_geneSets <- c("Monocytes", "Plasma_cells", "T_regs", "Cyt._act._T_cells", "Neutrophils", "Inflammatory_neutrophils", "Suppressive_neutrophils", "LDG", "CD40_activated")
    desired_geneSets <- c("IFN", "TNF", "IL-6R_complex", "IL-1_cytokines", "Pro-inflam._IL-1", "Monocyte_secreted", "Apoptosis", "NFkB_complex",   "NLRP3_inflammasome")
    selected_geneSets <- geneSets[desired_geneSets]
    # Print the selected gene sets
    print(selected_geneSets)
    
  3. prepare violin plots for 1_vs_3

    # 1. Compute GSVA scores:
    gsva_scores <- gsva(exprs, selected_geneSets, method="gsva")
    
    # 2. Convert to data.frame for ggplot:
    gsva_df <- as.data.frame(t(gsva_scores))
    
    # 3. Add conditions to gsva_df:
    identical(rownames(pData(target_m666Data)), rownames(gsva_df))
    gsva_df$Condition <- pData(target_m666Data)$Grp
    #identical(rownames(gsva_df_filtered), rownames(pData(target_m666Data)) )
    gsva_df$SampleID <- pData(target_m666Data)$SampleID
    
    # 4. Filter the gsva_df to retain only the desired conditions:
    #group 1 vs. group 3 in the nanostring data
    gsva_df_filtered <- gsva_df[gsva_df$Condition %in% c("1", "3"), ]
    
    # 5. Define a function to plot violin plots:
    # Define custom colors
    custom_colors <- c("Group1" = "lightblue", "Group1a" = "red", "Group3" = "grey")
    
    #To implement the custom colors, and make the adjustments to abbreviate "Inflammatory" and "Suppressive", as well as increase the font size for the groups on the x-axis, we can modify the plot_violin function as follows:
    gsva_df_filtered$Condition <- gsub("1", "Group1", gsva_df_filtered$Condition)
    gsva_df_filtered$Condition <- gsub("3", "Group3", gsva_df_filtered$Condition)
    gsva_df_filtered$Condition <- factor(gsva_df_filtered$Condition, levels = c("Group1", "Group3"))
    plot_violin <- function(data, gene_name) {
      # Calculate the t-test p-value for the two conditions
      condition1_data <- data[data$Condition == "Group1", gene_name]
      condition2_data <- data[data$Condition == "Group3", gene_name]
      p_value <- t.test(condition1_data, condition2_data)$p.value
    
      # Convert p-value to annotation
      p_annotation <- ifelse(p_value < 0.01, "**", ifelse(p_value < 0.05, "*", ""))
      rounded_p_value <- paste0("p = ", round(p_value, 2))
    
      plot_title <- gsub("_", " ", gene_name)
      p <- ggplot(data, aes(x=Condition, y=!!sym(gene_name), fill=Condition)) +
        geom_violin(linewidth=1.2) + 
        scale_fill_manual(values = custom_colors) +
        labs(title=plot_title, y="GSVA Score") +
        ylim(-1, 1) +
        theme_light() +
        theme(
          axis.title.x = element_text(size=12),
          axis.title.y = element_text(size=12),
          axis.text.x  = element_text(size=10),
          axis.text.y  = element_text(size=10),
          plot.title   = element_text(size=12, hjust=0.5),
          legend.position = "none" # Hide legend since the colors are self-explanatory
        )
    
      # Add p-value annotation to the plot
      p <- p + annotate("text", x=1.5, y=0.9, label=paste0(p_annotation, " ", rounded_p_value), size=5, hjust=0.5)
    
      return(p)
    }
    
    # 6. Generate the list of plots in a predefined order:
    #desired_order <- c("Monocytes", "Plasma_cells", "T_regs", "Cyt._act._T_cells", "Neutrophils", "Inflammatory_neutrophils", "Suppressive_neutrophils", "LDG", "CD40_activated")
    desired_order <- c("IFN", "TNF", "IL-6R_complex", "IL-1_cytokines", "Pro-inflam._IL-1", "Monocyte_secreted", "Apoptosis", "NFkB_complex",   "NLRP3_inflammasome")
    genes <- colnames(gsva_df_filtered)[!colnames(gsva_df_filtered) %in% "Condition"]
    genes <- genes[match(desired_order, genes)]
    genes <- genes[!is.na(genes)]
    second_row_plots <- lapply(genes, function(gene) plot_violin(gsva_df_filtered, gene))
    
  4. prepare violin plots for 1a_vs_3

    # 2. Convert to data.frame for ggplot:
    gsva_df <- as.data.frame(t(gsva_scores))
    
    # 3. Add conditions to gsva_df:
    identical(rownames(pData(target_m666Data)), rownames(gsva_df))
    gsva_df$Condition <- pData(target_m666Data)$Group
    #identical(rownames(gsva_df_filtered), rownames(pData(target_m666Data)) )
    gsva_df$SampleID <- pData(target_m666Data)$SampleID
    
    # 4. Filter the gsva_df to retain only the desired conditions:
    #group 1 vs. group 3 in the nanostring data
    gsva_df_filtered <- gsva_df[gsva_df$Condition %in% c("1a", "3"), ]
    
    # 5. Define a function to plot violin plots:
    # Update the condition levels in gsva_df_filtered to ensure the desired order on x-axis:
    gsva_df_filtered$Condition <- gsub("1a", "Group1a", gsva_df_filtered$Condition)
    gsva_df_filtered$Condition <- gsub("3", "Group3", gsva_df_filtered$Condition)
    gsva_df_filtered$Condition <- factor(gsva_df_filtered$Condition, levels = c("Group1a", "Group3"))
    plot_violin <- function(data, gene_name) {
      # Calculate the t-test p-value for the two conditions
      condition1_data <- data[data$Condition == "Group1a", gene_name]
      condition2_data <- data[data$Condition == "Group3", gene_name]
      p_value <- t.test(condition1_data, condition2_data)$p.value
    
      # Convert p-value to annotation
      p_annotation <- ifelse(p_value < 0.01, "**", ifelse(p_value < 0.05, "*", ""))
      rounded_p_value <- paste0("p = ", round(p_value, 2))
    
      plot_title <- gsub("_", " ", gene_name)
      p <- ggplot(data, aes(x=Condition, y=!!sym(gene_name), fill=Condition)) +
        geom_violin(linewidth=1.2) + 
        scale_fill_manual(values = custom_colors) +
        labs(title=plot_title, y="GSVA Score") +
        ylim(-1, 1) +
        theme_light() +
        theme(
          axis.title.x = element_text(size=12),
          axis.title.y = element_text(size=12),
          axis.text.x  = element_text(size=10),
          axis.text.y  = element_text(size=10),
          plot.title   = element_text(size=12, hjust=0.5),
          legend.position = "none" # Hide legend since the colors are self-explanatory
        )
    
      # Add p-value annotation to the plot
      p <- p + annotate("text", x=1.5, y=0.9, label=paste0(p_annotation, " ", rounded_p_value), size=5, hjust=0.5)
    
      return(p)
    }
    
    # 6. Generate the list of plots in a predefined order:
    genes <- colnames(gsva_df_filtered)[!colnames(gsva_df_filtered) %in% "Condition"]
    genes <- genes[match(desired_order, genes)]
    genes <- genes[!is.na(genes)]
    first_row_plots <- lapply(genes, function(gene) plot_violin(gsva_df_filtered, gene))
    
  5. (option 1 for plot 1) merge first_row_plots and second_row_plots to a final plot using cowplot

    library(cowplot)
    library(ggplot2)
    
    # Start by extracting the 1-8 plots from each list
    first_row_plots <- first_row_plots[1:9]
    second_row_plots <- second_row_plots[1:9]
    
    # Function to modify the individual plots based on position in the grid
    modify_plot <- function(p, row, col) {
      #if (col > 1) {
        p <- p + theme(axis.title.y = element_blank()) # remove y-axis title if not the first plot
      #}
      #if (row == 2) {
      #  p <- p + theme(plot.title = element_blank()) # remove plot title for second row, commented because it has alreay been done below.
      #}
      p <- p + theme(
        axis.title.x = element_blank(), # remove x-axis title for all plots
        axis.title.y = element_blank(), # remove x-axis title for all plots
        axis.text = element_text(size = 14), # Increase axis text size
        axis.title = element_text(size = 16), # Increase axis title size
        plot.title = element_text(size = 16) # Increase plot title size
      )
      return(p)
    }
    
    # Abbreviate titles for specific plots
    first_row_plots[[6]]$labels$title <- "Inflam. neutrophils"
    first_row_plots[[7]]$labels$title <- "Suppr. neutrophils"
    second_row_plots[[6]]$labels$title <- "Inflam. neutrophils"
    second_row_plots[[7]]$labels$title <- "Suppr. neutrophils"
    
    # Apply the modifications to the plots
    for (i in 1:9) {
      first_row_plots[[i]] <- modify_plot(first_row_plots[[i]], 1, i)
      second_row_plots[[i]] <- modify_plot(second_row_plots[[i]], 2, i)
    }
    
    # Increase the font size of x-axis labels for each plot
    for (i in 1:9) {
      first_row_plots[[i]] <- first_row_plots[[i]] + theme(axis.text.x = element_text(size = 14), axis.text.y = element_text(size = 12))
      second_row_plots[[i]] <- second_row_plots[[i]] + theme(axis.text.x = element_text(size = 14), axis.text.y = element_text(size = 12), plot.title= element_blank())
    }
    
    # Now, combine the modified plots into a single list
    all_plots <- c(first_row_plots, second_row_plots)
    
    # Generate the 2x9 grid
    final_plot <- plot_grid(plotlist = all_plots, ncol = 9)
    
    # Save the plot to a PNG file
    png("Carotis_NanoString2.png", width=1400, height=380)
    print(final_plot)
    dev.off()
    
  6. (option 2 for plot 2) generating two 3x3 grid plots

    # Start by extracting the 1-9 plots from each list
    first_row_plots <- first_row_plots[1:9]
    second_row_plots <- second_row_plots[1:9]
    
    # Function to modify the individual plots based on position in the grid
    modify_plot <- function(p, row, col) {
      p <- p + theme(axis.title.y = element_blank()) # remove y-axis title if not the first plot
      p <- p + theme(
        axis.title.x = element_blank(), # remove x-axis title for all plots
        axis.title.y = element_blank(), # remove x-axis title for all plots
        axis.text = element_text(size = 14), # Increase axis text size
        axis.title = element_text(size = 16), # Increase axis title size
        plot.title = element_text(size = 16) # Increase plot title size
      )
      return(p)
    }
    
    # Apply the modifications to the plots
    for (i in 1:9) {
      first_row_plots[[i]] <- modify_plot(first_row_plots[[i]], 1, i)
      second_row_plots[[i]] <- modify_plot(second_row_plots[[i]], 2, i)
    }
    
    # Increase the font size of x-axis labels for each plot
    for (i in 1:9) {
      first_row_plots[[i]] <- first_row_plots[[i]] + theme(axis.text.x = element_text(size = 14), axis.text.y = element_text(size = 12))
      second_row_plots[[i]] <- second_row_plots[[i]] + theme(axis.text.x = element_text(size = 14), axis.text.y = element_text(size = 12))
    }
    
    # Pad first_row_plots to have 9 plots
    remaining_plots <- 9 - length(first_row_plots)
    if (remaining_plots > 0) {
      first_row_plots <- c(first_row_plots, rep(list(NULL), remaining_plots))
    }
    
    # Pad second_row_plots to have 9 plots
    remaining_plots2 <- 9 - length(second_row_plots)
    if (remaining_plots2 > 0) {
      second_row_plots <- c(second_row_plots, rep(list(NULL), remaining_plots2))
    }
    
    # Convert the first_row_plots to a matrix and draw
    plots_matrix_1 <- matrix(first_row_plots, ncol=3, byrow=TRUE)
    png("Carotis_NanoString_grid_1.png", width=600, height=600)
    do.call("grid.arrange", c(plots_matrix_1, list(ncol=3)))
    dev.off()
    
    # Convert the second_row_plots to a matrix and draw
    plots_matrix_2 <- matrix(second_row_plots, ncol=3, byrow=TRUE)
    png("Carotis_NanoString_grid_2.png", width=600, height=600)
    do.call("grid.arrange", c(plots_matrix_2, list(ncol=3)))
    dev.off()
    

like unlike

点赞本文的读者

还没有人对此文章表态


本文有评论

没有评论

看文章,发评论,不要沉默


© 2023 XGenes.com Impressum