Small RNA processing

gene_x 0 like s 519 view s

Tags:

Small RNA sequencing is a type of RNA-sequencing (RNA-seq) that specifically targets and sequences small RNA molecules in a sample.

RNA-seq is a technique that uses next-generation sequencing (NGS) to reveal the presence and quantity of RNA in a biological sample at a given moment, capturing a snapshot of the transcriptome.

Small RNAs, including microRNAs (miRNAs), small interfering RNAs (siRNAs), and piwi-interacting RNAs (piRNAs), play crucial roles in gene regulation. They typically range from 20 to 30 nucleotides in length.

  1. prepare raw data

    #mv Data_Ute_smallRNA_3/bundle_v1 Data_Ute_smallRNA_5
    ln -s ../Data_Ute_smallRNA_3/bundle_v1 .
    
    #OLD    MKL_1_wt_1_221216.fastq.gz -> ../221216_NB501882_0404_AHLVNMBGXM/ute/nf796/MKL_1_wt_1_S16_R1_001.fastq.gz
    #OLD    MKL_1_wt_2_221216.fastq.gz -> ../221216_NB501882_0404_AHLVNMBGXM/ute/nf797/MKL_1_wt_2_S17_R1_001.fastq.gz
    
    ln -s ./230623_newDemulti_smallRNAs/210817_NB501882_0294_AHW5Y2BGXJ_smallRNA_Ute_newDemulti/2021_nf_ute_smallRNA/nf655/MKL_1_derived_EV_miRNA_S1_R1_001.fastq.gz 2021_August_nf655_MKL-1_EV-miRNA.fastq.gz
    ln -s ./230623_newDemulti_smallRNAs/210817_NB501882_0294_AHW5Y2BGXJ_smallRNA_Ute_newDemulti/2021_nf_ute_smallRNA/nf657/WaGa_derived_EV_miRNA_S2_R1_001.fastq.gz 2021_August_nf657_WaGa_EV-miRNA.fastq.gz
    
    ln -s ./230623_newDemulti_smallRNAs/220617_NB501882_0371_AH7572BGXM_smallRNA_Ute_newDemulti/2022_nf_ute_smallRNA/nf774/0403_WaGa_wt_S1_R1_001.fastq.gz 2022_August_nf774_0403_WaGa_wt.fastq.gz
    ln -s ./230623_newDemulti_smallRNAs/220617_NB501882_0371_AH7572BGXM_smallRNA_Ute_newDemulti/2022_nf_ute_smallRNA/nf780/0505_MKL1_wt_S2_R1_001.fastq.gz 2022_August_nf780_0505_MKL-1_wt.fastq.gz
    
    ln -s ./230623_newDemulti_smallRNAs/221216_NB501882_0404_AHLVNMBGXM_smallRNA_Ute_newDemulti/2022_nf_ute_smallRNA/nf796/MKL-1_wt_1_S1_R1_001.fastq.gz 2022_November_nf796_MKL-1_wt_1.fastq.gz
    ln -s ./230623_newDemulti_smallRNAs/221216_NB501882_0404_AHLVNMBGXM_smallRNA_Ute_newDemulti/2022_nf_ute_smallRNA/nf797/MKL-1_wt_2_S2_R1_001.fastq.gz 2022_November_nf797_MKL-1_wt_2.fastq.gz
    
    ln -s ./230602_NB501882_0428_AHKG53BGXT/demulti_new/nf876/1002_WaGa_sT_Dox_S1_R1_001.fastq.gz    2023_June_nf876_1002_WaGa_sT_Dox.fastq.gz
    ln -s ./230602_NB501882_0428_AHKG53BGXT/demulti_new/nf887/2312_MKL_1_scr_DMSO_S2_R1_001.fastq.gz 2023_June_nf887_2312_MKL-1_scr_DMSO.fastq.gz
    
  2. main run

    mkdir our_out
    # -qc -ra TGGAATTCTCGGGTGCCAAGGAACTCCAGTCAC -rb 4 #NOT_USED
    # -mic -mtool Blast -mdb viruses #IGNORING Microbe Module since it is very time-consuming!
    
    #jhuang@hamburg:~/DATA/Data_Ute/Data_Ute_smallRNA_5$ java -jar COMPSRA.jar -ref hg38 -qc -ra TGGAATTCTCGGGTGCCAAGGAACTCCAGTCAC -rb 4 -rh 20 -rt 20 -rr 20 -rlh 8,17 -aln -mt star -ann -ac 1,2,3,4,5,6 -mic -mtool Blast -mdb viruses -in 2021_August_nf655_MKL-1_EV-miRNA.fastq.gz -out ./our_out/
    for sample in 2021_August_nf655_MKL-1_EV-miRNA 2021_August_nf657_WaGa_EV-miRNA    2022_August_nf774_0403_WaGa_wt 2022_August_nf780_0505_MKL-1_wt    2022_November_nf796_MKL-1_wt_1 2022_November_nf797_MKL-1_wt_2    2023_June_nf876_1002_WaGa_sT_Dox 2023_June_nf887_2312_MKL-1_scr_DMSO; do
      mkdir our_out/${sample}/
      java -jar COMPSRA.jar -ref hg38   -rh 20 -rt 20 -rr 20 -rlh 8,17 -aln -mt star -ann -ac 1,2,3,4,5,6  -in ${sample}.fastq.gz -out ./our_out/
    done
    
  3. prepare Data_Ute/Data_Ute_smallRNA_4/sample.list

    2021_August_nf655_MKL-1_EV-miRNA
    2021_August_nf657_WaGa_EV-miRNA
    2022_August_nf774_0403_WaGa_wt
    2022_August_nf780_0505_MKL-1_wt
    2022_November_nf796_MKL-1_wt_1
    2022_November_nf797_MKL-1_wt_2
    2023_June_nf876_1002_WaGa_sT_Dox
    2023_June_nf887_2312_MKL-1_scr_DMSO
    
  4. extract the raw counts and perform statistical test on pre-defined groups.

    #The following results calculate raw counts (Note: If you only want to merge the count files, you can use -fm -fms.)
    java -jar COMPSRA.jar -ref hg38 -fun -fm -fms 1-8 -fdclass 1,2,3,4,5 -fdann -pro COMPSRA_MERGE -inf ./sample.list -out ./our_out/
    #The following command calculate statistical test after defining case and control.
    java -jar COMPSRA.jar -ref hg38 -fun -fd -fdclass 1,2,3,4,5,6 -fdcase 1-2 -fdctrl 3-6 -fdnorm cpm -fdtest mwu -fdann -pro COMPSRA_DEG -inf ./sample.list -out ./our_out/
    
    sed -i -e 's/_August/-08/g' COMPSRA_MERGE_0_miRNA.txt
    sed -i -e 's/_November/-11/g' COMPSRA_MERGE_0_miRNA.txt
    sed -i -e 's/_June/-06/g' COMPSRA_MERGE_0_miRNA.txt
    sed -i -e 's/_STAR_Aligned_miRNA.txt//g' COMPSRA_MERGE_0_miRNA.txt
    #sed -i -e 's/_piRNA.txt//g' COMPSRA_MERGE_0_piRNA.txt
    #sed -i -e 's/_tRNA.txt//g' COMPSRA_MERGE_0_tRNA.txt
    #sed -i -e 's/_snoRNA.txt//g' COMPSRA_MERGE_0_snoRNA.txt
    #sed -i -e 's/_snRNA.txt//g' COMPSRA_DEG_0_snRNA.txt
    sed -i -e 's/_August/-08/g' COMPSRA_DEG_0_miRNA.txt
    sed -i -e 's/_November/-11/g' COMPSRA_DEG_0_miRNA.txt
    sed -i -e 's/_June/-06/g' COMPSRA_DEG_0_miRNA.txt
    sed -i -e 's/_STAR_Aligned_miRNA.txt//g' COMPSRA_DEG_0_miRNA.txt
    
    import pandas as pd
    df = pd.read_csv('COMPSRA_MERGE_0_miRNA.txt', sep='\t', index_col=0)
    df = df.drop(columns=['Unnamed: 9'])
    # Assuming df is your DataFrame
    df.loc['Sum'] = df.sum(numeric_only=True)
    
    df.to_csv('COMPSRA_MERGE_0_miRNA_.txt', sep='\t')
    df = pd.read_csv('COMPSRA_MERGE_0_piRNA.txt', sep='\t', index_col=0)
    df = df.drop(columns=['Unnamed: 9'])
    df.loc['Sum'] = df.sum(numeric_only=True)
    df.to_csv('COMPSRA_MERGE_0_piRNA_.txt', sep='\t')
    df = pd.read_csv('COMPSRA_MERGE_0_snoRNA.txt', sep='\t', index_col=0)
    df = df.drop(columns=['Unnamed: 9'])
    df.loc['Sum'] = df.sum(numeric_only=True)
    df.to_csv('COMPSRA_MERGE_0_snoRNA_.txt', sep='\t')
    df = pd.read_csv('COMPSRA_MERGE_0_snRNA.txt', sep='\t', index_col=0)
    df = df.drop(columns=['Unnamed: 9'])
    df.loc['Sum'] = df.sum(numeric_only=True)
    df.to_csv('COMPSRA_MERGE_0_snRNA_.txt', sep='\t')
    df = pd.read_csv('COMPSRA_MERGE_0_tRNA.txt', sep='\t', index_col=0)
    df = df.drop(columns=['Unnamed: 9'])
    df.loc['Sum'] = df.sum(numeric_only=True)
    df.to_csv('COMPSRA_MERGE_0_tRNA_.txt', sep='\t')
    
    #samtools flagstat **.bam
    #47217410 + 0 in total (QC-passed reads + QC-failed reads)
    #45166321 + 0 mapped (95.66% : N/A)
    #2051089 + 0 in total (QC-passed reads + QC-failed reads)
    
    #TODO: check the microRNA in the paper mentioned in which position?
    #Single publications on EVs as transport vehicles for specific miRNAs in the pathogenesis of Merkel cell carcinoma have also been reported, such as miR-375 and its function in proliferation
    
    ~/Tools/csv2xls-0.4/csv_to_xls.py COMPSRA_MERGE_0_miRNA_.txt \
    COMPSRA_MERGE_0_piRNA_.txt \
    COMPSRA_MERGE_0_tRNA_.txt \
    COMPSRA_MERGE_0_snoRNA_.txt \
    COMPSRA_MERGE_0_snRNA_.txt \
    -d$'\t' -o raw_counts.xls;
    
    # sorting the DEG table, change the sheet labels to 'miRNA_between_columns_B-C_and_columns_D-G'
    ~/Tools/csv2xls-0.4/csv_to_xls.py COMPSRA_DEG_0_miRNA.txt -d$'\t' -o normalized_and_significance_test_miRNA.xls;
    
    ##merging the row counts and statical values
    #cut -f1-1 COMPSRA_MERGE_0_snoRNA.txt > f1_MERGE
    #cut -f1-1 COMPSRA_DEG_0_snoRNA.txt > f1_DEG
    #cut -f1-1 COMPSRA_MERGE_0_miRNA.txt > f1_MERGE
    #cut -f1-1 COMPSRA_DEG_0_miRNA.txt > f1_DEG
    #diff f1_MERGE f1_DEG
    
  5. calculate the number of total reads, total human reads and total non-human reads.

    for sample in 2021_August_nf655_MKL-1_EV-miRNA 2021_August_nf657_WaGa_EV-miRNA    2022_August_nf774_0403_WaGa_wt 2022_August_nf780_0505_MKL-1_wt    2022_November_nf796_MKL-1_wt_1 2022_November_nf797_MKL-1_wt_2    2023_June_nf876_1002_WaGa_sT_Dox 2023_June_nf887_2312_MKL-1_scr_DMSO; do
      echo "--------------- ${sample} ---------------"
      samtools flagstat ./${sample}/${sample}_STAR_Aligned.out.bam
      samtools flagstat ./${sample}/${sample}_STAR_Aligned_UnMapped.bam
    done
    

COMPSRA was composed of five functional modules: Quality Control, Alignment, Annotation, Microbe and Function. They are integrated into a pipeline and each module can also process independently.

Small_RNA_processing

  • Quality Control: To deal with fastq files and filter out the adapter sequences and reads with low quality.

    • FASTQ files from the small RNA sequencing of biological samples are the default input.
    • First, the adapter portions of a read are trimmed along with any randomized bases at ligation junctions that are produced by some small RNA-seq kits (e.g., NEXTflexT M Small RNA-Seq kit). The adapter sequences, typically situated at the 3' (3-prime) end, vary across different kits. Some commonly employed adapter sequences are listed below:
      • TruSeq Small RNA (Illumina) TGGAATTCTCGGGTGCCAAGG
      • Small RNA Kits V1 (Illumina) TCGTATGCCGTCTTCTGCTTGT
      • Small RNA Kits V1.5 (Illumina) ATCTCGTATGCCGTCTTCTGCTTG
      • NEXTflex Small RNA Sequencing Kit v3 for Illumina Platforms (Bioo Scientific) TGGAATTCTCGGGTGCCAAGG
      • LEXOGEN Small RNA-Seq Library Prep Kit (Illumina) TGGAATTCTCGGGTGCCAAGGAACTCCAGTCAC
    • The read quality of the remaining sequence is evaluated using its corresponding Phred score.
    • Poor quality reads are removed according to quality control parameters set in the command line (-rh 20 –rt 20 –rr 20).
    • Users can specify qualified reads of specific length intervals for input into subse-quent modules.
  • Alignment:

    • To align the clean reads to the reference genome. COMPSRA uses STAR as its default RNA sequence aligner with default parameters which are customizable on the command line.
    • Qualified reads from the QC module output are first mapped to the human genome hg19/hg38, and then aligned reads are quantified and annotated in the Annotation Module.
    • Reads that could not be mapped to the human genome are saved into a FASTA file for input into the Microbe Module.
  • Annotation:

    • To annotate different kinds of circulating RNAs based on the alignment result.
    • COMPSRA currently uses several different small RNA databases for annotating human genome mapped reads and provides all the possible annotations:
    • miRBase (Kozomara and Griffiths-Jones, 2011) for miRNA;
    • piRNABank (Sai Lakshmi and Agrawal, 2008);
    • piRBase (Zhang, et al., 2014) and piRNACluster (Rosenkranz, 2016) for piRNA;
    • gtRNAdb (Chan and Lowe, 2016) for tRNA;
    • GENCODE release 27 (Harrow, et al., 2012) for snRNA and snoRNA;
    • circBase (Glazar, et al., 2014) for circular RNA.
    • To conform the different reference human genome versions in these databases, we use an automatic LiftOver created by the UCSC Genome Browser Group.
    • All the databases used are already pre-built, enabling speedy annotation.
  • Microbe:

    • To predict the possible species of microbes existed in the samples.
    • The qualified reads that could not be mapped to the human genome in the Alignment Module are aligned to the nucleotide (nt) database (Coordinators, 2013) from UCSC using BLAST.
    • The four major microbial taxons archaea, bacteria, fungi and viruses are supported.
  • Function:

    • To perform differential expression analysis and other functional studies to be extended.
    • The read count of each RNA molecule that is identified in the Annotation Module is outputted as a tab-delimited text file according to RNA type.
    • With more than one sample FASTQ file inputs, the output are further aggregated into a data matrix of RNA molecules as rows and samples as columns showing the read counts of an RNA molecule across different samples.
    • The user can mark each sample FASTQ file column as either a case or a control in the command line, and perform a case versus control differential expression analysis for each RNA molecule using the Mann-Whitney rank sum test (Wilcoxon Rank Sum Test) as the default statistical test.

like unlike

点赞本文的读者

还没有人对此文章表态


本文有评论

没有评论

看文章,发评论,不要沉默


© 2023 XGenes.com Impressum